Điều khiển mặt động cho hệ thống xy lanh servo thủy lực
170 lượt xemDOI:
https://doi.org/10.54939/1859-1043.j.mst.93.2024.19-29Từ khóa:
Điều khiển mặt động; Kỹ thuật cuốn chiếu; Xy lanh Servo điện thủy lực.Tóm tắt
Hệ thống điện-thủy lực được sử dụng rộng rãi trong sản xuất công nghiệp do tỷ lệ công suất trên trọng lượng cao. Ngoài ra, do đặc tính chịu tải lớn khiến hệ thống điện-thủy lực bị tác động của nhiễu ngay cả khi bộ truyền động chuyển động nhẹ, đặc biệt là trong các máy di động và hệ thống nhiều cơ cấu chấp hành. Điều khiển mặt động dựa trên phương pháp điều khiển cuốn chiếu Backstepping được áp dụng để tránh hiện tượng nổ đạo hàm khi tính đạo hàm của đầu vào điều khiển ảo, giúp giảm độ phức tạp tính toán của hệ thống. Để kiểm chứng tính hiệu quả của phương pháp điều khiển cuốn chiếu Backstepping được đề xuất, bộ điều khiển tỷ lệ-tích phân-đạo hàm PID được thiết kế để so sánh với bộ điều khiển mặt động (Dynamic Surface Control - DSC) bằng phương pháp Backstepping và kết quả so sánh cho thấy bộ điều khiển đề xuất có hiệu suất bám quỹ đạo chính xác hơn.
Tài liệu tham khảo
[1]. N. D. Manring and R. C. Fales, “Hydraulic Control Systems”. Wiley, (2019). doi: 10.1002/9781119418528. DOI: https://doi.org/10.1002/9781119418528
[2]. Q. Guo and D. Jiang, “Nonlinear Control Techniques for Electro-Hydraulic Actuators in Robotics Engineering”. CRC Press, (2017). doi: 10.1201/b22105. DOI: https://doi.org/10.1201/b22105
[3]. A. Bonchis, P. I. Corke, D. C. Rye, and Q. P. Ha, “Variable structure methods in hydraulic servo systems control,” Automatica, vol. 37, no. 4, pp. 589–595, (2001), doi: 10.1016/S0005-1098(00)00192-8. DOI: https://doi.org/10.1016/S0005-1098(00)00192-8
[4]. B. Ayalew and B. T. Kulakowski, “Cascade tuning for nonlinear position control of an electrohydraulic actuator,” Proc. Am. Control Conf., vol. 2006, pp. 4627–4632, (2006), doi: 10.1109/ACC.2006.1657451. DOI: https://doi.org/10.1109/ACC.2006.1657451
[5]. D. Won, W. Kim, D. Shin, and C. C. Chung, “High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems,” IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 787–795, (2015), doi: 10.1109/TCST.2014.2325895. DOI: https://doi.org/10.1109/TCST.2014.2325895
[6]. S. Li, K. Zhu, L. Chen, Y. Yan, and Q. Guo, “Variable Structure Disturbance Observer Based Dynamic Surface Control of Electrohydraulic Systems with Parametric Uncertainty,” Energies, vol. 15, no. 5, p. 1671, Feb. 2022, doi: 10.3390/en15051671. DOI: https://doi.org/10.3390/en15051671
[7]. V. T. Dang, D. B. H. Nguyen, T. D. T. Tran, D. T. Le, and T. L. Nguyen, “Model‐free hierarchical control with fractional‐order sliding surface for multisection web machines,” Int. J. Adapt. Control Signal Process., vol. 37, no. 2, pp. 497–518, (2023), doi: 10.1002/acs.3534. DOI: https://doi.org/10.1002/acs.3534
[8]. D. Thinh Le, M. Tung Ngo, V. Trong Dang, V. Nam Giap, B. Minh Nguyen, and T. Lam Nguyen, “A New Axial Gap Bearingless Motor Drive System with Nonlinear Robust Control,” in 2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS), IEEE, pp. 371–376, (2022). doi: 10.1109/ICCAIS56082.2022.9990420. DOI: https://doi.org/10.1109/ICCAIS56082.2022.9990420
[9]. Y. Wang, J. Zhao, H. Ding, and H. Zhang, “Dynamic surface control based on high-gain disturbance observer for electro-hydraulic systems with position/velocity constraints,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 235, no. 18, pp. 3485–3494, (2021), doi: 10.1177/0954406220978263. DOI: https://doi.org/10.1177/0954406220978263
[10]. R. Nash, R. Nouri, and A. Vasel-be-hagh, “Wind turbine wake control strategies : A review and concept proposal,” Energy Convers. Manag., vol. 245, no. April, p. 114581, (2021), doi: 10.1016/j.enconman.2021.114581. DOI: https://doi.org/10.1016/j.enconman.2021.114581
[11]. H. Ren, G. Deng, B. Hou, S. Wang, and G. Zhou, “Finite-Time Command Filtered Backstepping Algorithm-Based Pitch Angle Tracking Control for Wind Turbine Hydraulic Pitch Systems,” IEEE Access, vol. 7, pp. 135514–135524, (2019), doi: 10.1109/ACCESS.2019.2941891. DOI: https://doi.org/10.1109/ACCESS.2019.2941891
[12]. D. Rodriguez-Guevara, A. Favela-Contreras, F. Beltran-Carbajal, C. Sotelo, and D. Sotelo, “An MPC-LQR-LPV Controller with Quadratic Stability Conditions for a Nonlinear Half-Car Active Suspension System with Electro-Hydraulic Actuators,” Machines, vol. 10, no. 2, (2022), doi: 10.3390/machines10020137. DOI: https://doi.org/10.3390/machines10020137