Dynamic surface control for electro-hydraulic servo cylinder system
170 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.93.2024.19-29Keywords:
Dynamic Surface Control; Backstepping technique; Electro-hydraulic servo cylinder.Abstract
Electro-hydraulic systems are widely used in industrial production due to their high power-to-weight ratio, but their heavy-duty nature causes electro-hydraulic systems to endure large disturbance forces even when the actuator slight movement, especially in mobile machines and a system of multiple actuators. Dynamic surface control based on the backstepping method is applied to avoid the derivative explosion phenomenon when calculating the derivative of the virtual control input, which greatly reduces the computational complexity of the system. To verify the effectiveness of the proposed controller, the proportional integral controller is designed to compare with the dynamic surface control using the Backstepping technique and the comparison results show that The proposed controller has more accurate trajectory tracking performance.
References
[1]. N. D. Manring and R. C. Fales, “Hydraulic Control Systems”. Wiley, (2019). doi: 10.1002/9781119418528. DOI: https://doi.org/10.1002/9781119418528
[2]. Q. Guo and D. Jiang, “Nonlinear Control Techniques for Electro-Hydraulic Actuators in Robotics Engineering”. CRC Press, (2017). doi: 10.1201/b22105. DOI: https://doi.org/10.1201/b22105
[3]. A. Bonchis, P. I. Corke, D. C. Rye, and Q. P. Ha, “Variable structure methods in hydraulic servo systems control,” Automatica, vol. 37, no. 4, pp. 589–595, (2001), doi: 10.1016/S0005-1098(00)00192-8. DOI: https://doi.org/10.1016/S0005-1098(00)00192-8
[4]. B. Ayalew and B. T. Kulakowski, “Cascade tuning for nonlinear position control of an electrohydraulic actuator,” Proc. Am. Control Conf., vol. 2006, pp. 4627–4632, (2006), doi: 10.1109/ACC.2006.1657451. DOI: https://doi.org/10.1109/ACC.2006.1657451
[5]. D. Won, W. Kim, D. Shin, and C. C. Chung, “High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems,” IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 787–795, (2015), doi: 10.1109/TCST.2014.2325895. DOI: https://doi.org/10.1109/TCST.2014.2325895
[6]. S. Li, K. Zhu, L. Chen, Y. Yan, and Q. Guo, “Variable Structure Disturbance Observer Based Dynamic Surface Control of Electrohydraulic Systems with Parametric Uncertainty,” Energies, vol. 15, no. 5, p. 1671, Feb. 2022, doi: 10.3390/en15051671. DOI: https://doi.org/10.3390/en15051671
[7]. V. T. Dang, D. B. H. Nguyen, T. D. T. Tran, D. T. Le, and T. L. Nguyen, “Model‐free hierarchical control with fractional‐order sliding surface for multisection web machines,” Int. J. Adapt. Control Signal Process., vol. 37, no. 2, pp. 497–518, (2023), doi: 10.1002/acs.3534. DOI: https://doi.org/10.1002/acs.3534
[8]. D. Thinh Le, M. Tung Ngo, V. Trong Dang, V. Nam Giap, B. Minh Nguyen, and T. Lam Nguyen, “A New Axial Gap Bearingless Motor Drive System with Nonlinear Robust Control,” in 2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS), IEEE, pp. 371–376, (2022). doi: 10.1109/ICCAIS56082.2022.9990420. DOI: https://doi.org/10.1109/ICCAIS56082.2022.9990420
[9]. Y. Wang, J. Zhao, H. Ding, and H. Zhang, “Dynamic surface control based on high-gain disturbance observer for electro-hydraulic systems with position/velocity constraints,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 235, no. 18, pp. 3485–3494, (2021), doi: 10.1177/0954406220978263. DOI: https://doi.org/10.1177/0954406220978263
[10]. R. Nash, R. Nouri, and A. Vasel-be-hagh, “Wind turbine wake control strategies : A review and concept proposal,” Energy Convers. Manag., vol. 245, no. April, p. 114581, (2021), doi: 10.1016/j.enconman.2021.114581. DOI: https://doi.org/10.1016/j.enconman.2021.114581
[11]. H. Ren, G. Deng, B. Hou, S. Wang, and G. Zhou, “Finite-Time Command Filtered Backstepping Algorithm-Based Pitch Angle Tracking Control for Wind Turbine Hydraulic Pitch Systems,” IEEE Access, vol. 7, pp. 135514–135524, (2019), doi: 10.1109/ACCESS.2019.2941891. DOI: https://doi.org/10.1109/ACCESS.2019.2941891
[12]. D. Rodriguez-Guevara, A. Favela-Contreras, F. Beltran-Carbajal, C. Sotelo, and D. Sotelo, “An MPC-LQR-LPV Controller with Quadratic Stability Conditions for a Nonlinear Half-Car Active Suspension System with Electro-Hydraulic Actuators,” Machines, vol. 10, no. 2, (2022), doi: 10.3390/machines10020137. DOI: https://doi.org/10.3390/machines10020137