Investigating the effect of temperature and strain rate on the microstructure of nanocrystalline CoCrFeMnNi high‑entropy alloy by molecular dynamics method
82 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.97.2024.165-172Keywords:
CoCrFeMnNi high entropy alloy; Temperature; Strain rates; Molecular dynamics method.Abstract
The effect of temperature and strain rates on the microstructure development of a typical polycrystalline CoCrFeMnNi high entropy alloy was studied in molecular dynamics. Four typical temperatures of 300 K, 700 K, and 1100 K were selected. The results revealed that the peak stress and the tow stress decreased with the increases in formation temperatures, while the extent of twinning was found to be responsive to the temperatures. Furthermore, three strain rates of 1×108/s, 5×108/s, and 1×109/s were chosen to explore the influence of strain rate on the microstructural behavior of the material at 300 K. It was found that both peak stress and tow stress increased with the strain rates.
References
[1]. J.W. Yeh. “Alloy Design Strategies and Future Trends in High-Entropy Alloys”. Jom., 65, 1759–1771, (2013). DOI: https://doi.org/10.1007/s11837-013-0761-6
[2]. J.W. Yeh et. al. “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”. Advanced Engineering Materials., 6, 299–303, (2004). DOI: https://doi.org/10.1002/adem.200300567
[3]. J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen. “Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content”. Wear., 261, 513–519, (2006). DOI: https://doi.org/10.1016/j.wear.2005.12.008
[4]. Z. Fu, L. Jiang, J.L. Wardini, B.E. Macdonald, H. Wen, W. Xiong, et al. “A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength”. Science Advances., 4, 102 - 109, (2018). DOI: https://doi.org/10.1126/sciadv.aat8712
[5]. Shahmir. H et. al. “Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing”. Materials Science and Engineering: A. 705, 411–419, (2017). DOI: https://doi.org/10.1016/j.msea.2017.08.083
[6]. Y. Shi et. al. “Corrosion-Resistant High-Entropy Alloys: A Review”. Metals., 7, 43 - 53, (2017). DOI: https://doi.org/10.3390/met7020043
[7]. S. Sun, Y. Tian, X. An, H. Lin, J. Wang, Z. Zhang. “Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure”. Materials Today Nano., 4, 46–53, (2018). DOI: https://doi.org/10.1016/j.mtnano.2018.12.002
[8]. O. E. Atwani, N. Li, M. Li, A. Devaraj, J.K.S. Baldwin, M.M. Schneider, et al. “Outstanding radiation resistance of tungsten-based high-entropy alloys”. Science Advances., 5, 68 - 96, (2019). DOI: https://doi.org/10.1126/sciadv.aav2002
[9]. B. Cantor, I. Chang, P. Knight, A. “Vincent. Microstructural development in equiatomic multicomponent alloys”. Materials Science and Engineering: A., 9, 213– 218, (2004). DOI: https://doi.org/10.1016/j.msea.2003.10.257
[10]. A.Gali, E.George. “Tensile properties of high- and medium-entropy alloys”. Intermetallics., 39, 74–78, (2013). DOI: https://doi.org/10.1016/j.intermet.2013.03.018
[11]. A. Stukowski. “Visualization and analysis of atomistic simulation data with OVITO– the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering. 18, 012 - 018, (2009). DOI: https://doi.org/10.1088/0965-0393/18/1/015012
[12]. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie. “A fracture-resistant high-entropy alloy for cryogenic applications”. Science., 345, 1153–1158, (2014). DOI: https://doi.org/10.1126/science.1254581
[13]. Z. Zhang et al. “Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi”. Nature Communications, 6, 223 - 232, (2015). DOI: https://doi.org/10.1038/ncomms10143
[14]. N.L. Okamoto et al. “Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy”. Scientific Reports., 6, 103-112, (2016). DOI: https://doi.org/10.1038/srep35863
[15]. G. Laplanche, A. Kostka, O. Horst, G. Eggeler, E. George. “Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy”. Acta Materialia., 118, 152–163, (2016). DOI: https://doi.org/10.1016/j.actamat.2016.07.038
[16]. Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, et al. “Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating”. Applied Surface Science., 396, 1420–1426, (2017). DOI: https://doi.org/10.1016/j.apsusc.2016.11.176
[17]. T.N. Lam, Y.S. Chou, Y.J. Chang, T.R. Sui, A.C. Yeh, S. Harjo, et al. “Comparing Cyclic Tension-Compression Effects on CoCrFeMnNi High-Entropy Alloy and Ni-Based Superalloy”. Crystals., 9, 411- 420, (2019). . DOI: https://doi.org/10.3390/cryst9080420
[18]. J. Gu, M. Song. “Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy”. Scripta Materialia., 162, 345–349, (2019). DOI: https://doi.org/10.1016/j.scriptamat.2018.11.042
[19]. M. Naeem, H. He, S. Harjo, T. Kawasaki, F. Zhang, B. Wang, et al. “Extremely high dislocation density and deformation pathway of CrMnFeCoNi high entropy alloy at ultralow temperature”. Scripta Materialia., 188, 21–25, (2020). DOI: https://doi.org/10.1016/j.scriptamat.2020.07.004
[20]. W.M. Choi, Y. H. Jo, S. S. Sohn et al. “Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study”. Computational Materials., 1, 60-68, (2018). DOI: https://doi.org/10.1038/s41524-017-0060-9