MOVING OBJECT DETECTION FROM VIDEO CAPTURED BY MOVING SURVEILLANCE CAMERA
178 viewsKeywords:
Moving object detection; Moving camera; Object tracking; Panoramic image; Image difference.Abstract
This paper presents an effective method for the detection of multiple moving objects from a video sequence captured by a moving surveillance camera. Moving object detection from a moving camera is difficult since camera motion and object motion are mixed. In the proposed method, we created a panoramic picture from a moving camera. After that, with each frame captured from this camera, we used the template matching method to found its place in the panoramic picture. Finally, using the image differencing method, we found out moving objects. Experimental results have shown that the proposed method had good performance with more than 80% of true detection rate on average.
References
[1]. X. Zhou, C. Yang, W. Yu, “Moving object detection by detecting contiguous outliers in the low-rank representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence 35(3) (2013) 597-610.
[2]. W.-C. Hu, C.-Y. Yang, D.-Y. Huang, “Robust real-time ship detection and tracking for visual surveillance of cage aquaculture”, Journal of Visual Communication and Image Representation 22(6) (2011) 543-556.
[3]. F.-L. Lian, Y.-C. Lin, C.-T. Kuo, J.-H. Jean, “Voting-based motion estimation for real-time video transmission in networked mobile camera systems”, IEEE Transactions on Industrial Informatics 9(1) (2013) 172-180.
[4]. D. Tran, J. Yuan, D. Forsyth, “Video event detection: From subvolume localization to spatiotemporal path search”, IEEE Transactions on Pattern Analysis and Machine Intelligence 36(2) (2014) 404-416.
[5]. Marie-Neige Chapel, Thierry Bouwmans, “Moving objects detection with a moving camera: A Comprehensive Review”, Computer Science Review, Volume 38, 2020, pp. 1-2.
[6]. D. Avola, L. Cinque, G. Foresti, C. Massaroni, D. Pannone, “A keypoint-based method for background modeling and foreground detection using a PTZ camera”, Pattern Recognition Letters 96 (2017) 96–105.
[7]. W. Choi, C. Pantofaru, S. Savarese, “A general framework for tracking multiple people from a moving camera”, IEEE Transactions on Pattern Analysis and Machine Intelligence 35(7) (2013).
[8]. P.M. Jodoin, M. Mignotte, C. Rosenberger, “Segmentation framework based on label field fusion”, IEEE Transactions on Image Processing 16(10) (2007) 2535-2550.
[9]. Y. Wang, “Joint random field model for all-weather moving vehicle detection”, IEEE Transactions on Image Processing 19(9) (2010) 2491-2501.
[10]. W.-C. Hu, C.-H. Chen, C.-M. Chen, T.-Y. Chen, “Effective moving object detection from videos captured by a moving camera”, in: Proceedings of the First Euro-China Conference on Intelligent Data Analysis and Applications, Vol. 1, 2014, pp. 343-353.