Investigation of Hydrological, physicochemical parameters, the level of fouling and metal corrosion rate in seawater environment at Long Son areas of Ba Ria – Vung Tau province
216 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.VITTEP.2022.192-199Keywords:
Hydrological; Physicochemical parameter; Level of fouling; Metal corrosion.Abstract
This article presents the results of determining the hydrophysical and chemical parameters, the degree of fouling, and the corrosion rate of carbon steel, copper, aluminum, and zinc in the water in the wharf area of the 2nd Naval Region M/BTL Brigade stationed in Ba Ria - Vung Tau province. The measurement results reached the hydrochemical parameters, the salinity of 18.4 ppt, pH = 6.9, the temperature of 29.2 oC, and conductivity of 30.6 mS/Cm, TDS 15.5 g/L; The level of fouling showed that the aluminum sample had the highest level and included seaweed, the carbon steel sample had a very high fouling density, and the zinc and copper samples had a low density. Corrosion rate results show that carbon steel 218 ± 8.72 μm/year, copper 93 ± 4.46 μm/year, zinc 79 ± 3.16 μm/year, and aluminum 9 ± 0.42 μm/year. In particular, the copper sample has severe localized corrosion at the edges of the immersed specimens.
References
[1]. Nambiar, N.K., Brindha, D., Punniyakotti, P., Venkatraman, B.R., & Angaiah, S., “Derris indica leaves extract as a green inhibitor for the corrosion of aluminium in alkaline medium”, Eng. Sci. 17, pp.167-175, (2022). DOI: https://doi.org/10.30919/es8d540
[2]. Jalgham, R.T.T., “Theoretical, monte carlo simulations studies on some triazole derivatives as corrosion inhibitors for mild steel in 1M HCl”, ES Energ Environ.13, pp.37–49, (2021). DOI: https://doi.org/10.30919/esee8c476
[3]. Liu, J., Zhang, J., Tang, J., Pu, L., Xue, Y., Lu, M., Xu, L., & Guo, Z., “Polydimethylsiloxane resin nanocomposite coating with alternating multilayer structure for corrosion protection performance”, ES Mater. Manuf. 10, pp.29–38, (2020). DOI: https://doi.org/10.30919/esmm5f912
[4]. Farahmandian, M., Saidi, M., & Fazlinejad, S., “Synthesis and characterization of nickel–cobalt spin coatings reinforced with carbon nanotubes: microstructural properties microhardness, and corrosion resistance”, Adv. Compos. Hybrid Mater, 52, pp. 296-304, (2022).
[5]. Zhang, M., Dong, M., “Garnet Li7La3Zr2O12 solid-state electrolyte: environmental corrosion, countermeasures and applications”, ES Energy Environ. 14, pp.22–33, (2021).
[6]. T.T.N. Lan, N.T.P. Thoa, R. Nishimura, Y. Tsujino, M. Yokoi and Y. Maeda, “Atmospheric Corrosion of Carbon Steel Under Field Exposure in the Southern Part of Vietnam”, Corros. Sci., 48(1), pp. 179–192, (2006). DOI: https://doi.org/10.1016/j.corsci.2004.11.018
[7]. E. Robert, “Melchers Long-Term Corrosion of Cast Irons and Steel in Marine and Atmospheric Environments”, Corros. Sci., 68, pp.186–194, (2013). DOI: https://doi.org/10.1016/j.corsci.2012.11.014
[8]. Ph. Refait, M. Jeannin, R. Sabot, H. Antony and S. Pineau, “Corrosion and Cathodic Protection of Carbon Steel in the Tidal Zone: Products, Mechanisms and Kinetics”, Corros. Sci., 90, pp.375–382, (2015). DOI: https://doi.org/10.1016/j.corsci.2014.10.035
[9]. T. Duan, W. Peng, K. Ding, W. Guo, J. Hou, W. Cheng, S. Liu and Xu. Likun, “Long-term Field Exposure Corrosion Behavior Investigation of 316L Stainless Steel in the Deep Sea Environment”, Ocean Eng., 189, pp.175-182, (2019). DOI: https://doi.org/10.1016/j.oceaneng.2019.106405
[10]. M. Wasim, T.D. Ngo and M. Abid, “Investigation of Long-Term Corrosion Resistance of Reinforced Concrete Structures Constructed with Various Types of Concretes in Marine and Various Climate Environments”, Constr. Build. Mater., 237, pp.117701, (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2019.117701
[11]. M. Wasim and M.B. Djukic, “Long-term External Microbiologically Influenced Corrosion of Buried Cast Iron Pipes in the Presence of Sulfate-Reducing Bacteria (SRB)”, Eng. Fail. Anal., 115, pp. 362-369, (2020). DOI: https://doi.org/10.1016/j.engfailanal.2020.104657
[12]. P. Craig, H.L. Ramandi, H. Chen, D. Vandermaat, A. Crosky, P. Hagan and S. Saydam, “Stress Corrosion Cracking of Rockbolts: An In-Situ Testing Approach”, Construction and Building Materials, 269, pp. 121-127, (2021). DOI: https://doi.org/10.1016/j.conbuildmat.2020.121275
[13]. J. Shi, Wu. Miao and J. Ming, “Long-term Corrosion Resistance of Reinforcing Steel in Alkali-Activated Slag Mortar After Exposure to Marine Environments”, Corros. Sci., 179, pp. 109175, (2021). DOI: https://doi.org/10.1016/j.corsci.2020.109175
[14]. I.A. Chaves and R.E. Melchers, “Pitting Corrosion in Pipeline Steel Weld Zones”, Corros. Sci., 53, pp. 4026–4032, (2011). DOI: https://doi.org/10.1016/j.corsci.2011.08.005
[15]. H. Wang, Z. Zhang, H. Qian and F. Fan, “Effect of Local Corrosion on the Axial Compression Behavior of Circular Steel Tubes”, Eng. Struct., 224, p 111205, (2020). DOI: https://doi.org/10.1016/j.engstruct.2020.111205
[16]. M.Y. Tan, F.B. Varela and Y. Huo, “Field and Laboratory Assessment of Electrochemical Probes for Visualizing Localized Corrosion under Buried Pipeline Conditions”, J. Pipeline Sci. Eng., 1(1), p 88–99, (2021). DOI: https://doi.org/10.1016/j.jpse.2021.01.004
[17]. M. Geiker, T. Danner, A. Michel, A.B. Revert, O. Linderoth and K. Hornbostel, “25 Years of Field Exposure of Pre-cracked Concrete Beams; Combined Impact of Spacers and Cracks Reinforcement Corrosion”, Constr. Build. Mater., 286, p 122801, (2021). DOI: https://doi.org/10.1016/j.conbuildmat.2021.122801
[18]. M. D. Pritzl, H. Tabatabai, A. Ghorbanpoor, “Long-term Chloride Profiles in Bridge Decks Treated with Penetrating Sealer or Corrosion Inhibitors”, Constr. Build. Mater. , 101, p 1037–1046, (2015). DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.158
[19]. V. Krivy, V. Urban and K. Kreislova, Development and Failures of Corrosion Layers on Typical Surfaces of Weathering Steel Bridges, Eng. Fail. Anal., 69, p 147–160, (2016). DOI: https://doi.org/10.1016/j.engfailanal.2015.12.007
[20]. H. Zhou, S. Chen, Du. Yanliang, Z. Lin, X. Liang, J. Liu and F. Xing, Field Test of a Reinforced Concrete Bridge under Marine Environmental Corrosion, Eng. Fail. Anal., 115, p 104669, (2020). DOI: https://doi.org/10.1016/j.engfailanal.2020.104669
[21]. Abbott A., Abel P.D., Arnold D.W. and Milne A., “Cost-benefit analysis of the use of TBT: the case for a treatment approach”, Science of the total environment, 258:5-19, (2000). DOI: https://doi.org/10.1016/S0048-9697(00)00505-2
[22]. Callow M. and Callow J.E., “Marine biofouling: a sticky problem”, Biologist, 49(1):10, (2002).
[23]. Rouhi A.M., “The squeeze of tributyltins”, Chemical & Engineering News, 27:41-42, (1998). DOI: https://doi.org/10.1021/cen-v076n017.p041
[24]. Schultz M.P., “Effects of coating roughness and biofouling on ship resistance and powering”, Biofouling, 23:331-341, (2007). DOI: https://doi.org/10.1080/08927010701461974
[25]. Schultz M.P., Bendick J.A., Holm E.R. and Hertel W.M., “Economic impact of biofouling on a naval surface ship”, Biofouling, 27:87-98, (2011). DOI: https://doi.org/10.1080/08927014.2010.542809
[26]. Đặng Thế Phương, N. I. Kuznetxop, Lê Công Thúy, “Ăn mòn và bảo vệ các công trình kim loại biển tại Vietsovpetro”, Hội thảo Môi trường nhiệt đới Việt Nam với vấn đề ăn mòn và bảo vệ kim loại, tr. 35-45, (1997).
[27]. Bùi Bá Xuân, Nguyễn Văn Chi, Mai Văn Minh, “Kết quả thử nghiệm ban đầu về sơn chống hà trên nền cao su”, Tạp chí Khoa học và Công nghệ nhiệt đới, 9, tr. 61-69, (2015).
[28]. Võ Hoàng Phương, Nguyễn Thị Hương, Nguyễn Ngọc Sơn, “Nghiên cứu thử nghiệm đánh giá hiệu quả của bộ vật liệu sơn phủ bảo vệ lớp vỏ cao su cách âm tàu ngầm kilo 636 chống tác động xâm thực của môi trường biển”, Tạp chí nghiên cứu KH&CN quân sự, đặc san, tr. 88-93, (2015).
[29]. Le Van Thang et al, “Five-Year Field Exposure for Visualized Corrosion of STK400 Graded Steel Pile in Brackish Environment of Phu My Industrial Port (Southern Vietnam)”, JMEPEG, 31, pp. 2801-2809, (2022). DOI: https://doi.org/10.1007/s11665-021-06395-8
[30]. International Standard ISO 8565:2011: “Metals and Alloys – Atmospheric Corrosion Test – General Requirements for Field Test”.
[31]. International Standard ISO 8407:2021: “Metals and Alloys – Procedure for removal of corrosion products from corrosion test specimens”.
[32]. Гуречич Е.С., Искра Е.В. и Куцевалова Е.П., “Защита морских судов от обрастания, Ленинград Судостроение”, 9, 132-136, (1978).
[33]. International Standard ISO 9225:2012: “Corrosion of metals and alloys. Corrosivity of atmospheres — Determination of corrosion rate of standard specimens for the evaluation of corrosivity”.
[34]. Kovalchuk I. L., Philichev N. L., Nguyễn Văn Chi, Lê Thị Mỹ Hiệp, Nguyễn Đức Anh, “Thử nghiệm tự nhiên hiệu quả chống hà đối với một số hệ sơn men của Liên bang Nga”, Tạp chí Khoa học và Công nghệ nhiệt đới, 10, tr. 102-108, (2016).
[35]. Zhu, X.R., Huang, G.Q., Lin, L.Y., Liu, D.Y., “Long-term corrosion characteristics of metallic materials in marine environments”, Corrosion engineering, science and technology, 43, pp. 328-334, (2008). DOI: https://doi.org/10.1179/147842208X338938
[36]. Jeffrey, R. and Melchers, R.E, “Measuring corrosivity in immersion conditions”, Proc. Corrosion & Prevention, Melbourne, 53, pp. 24-27, (2019).
[37]. Farro, N.W., Veleva, L. and Aguilar, P, “Copper marine corrosion: I. Corrosion rates in atmospheric and seawater environments of Peruvian Port”, The Open Corrosion Journal, 2, pp. 130-138, (2009). DOI: https://doi.org/10.2174/1876503300902010130
[38]. Nunez, L., Reguera, E., Corvo, F., Gonzalez, E. and Vazquez, C., “Corrosion of copper in seawater and its aerosols in a tropical island”, Corrosion Science, 47, pp. 461-484, (2005). DOI: https://doi.org/10.1016/j.corsci.2004.05.015