Research and design two-dimensional metamaterials absorber operating in the THz frequency region and applications in refractive index sensor
224 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.78.2022.140-150Keywords:
THz; metamaterials; Absorbs two-dimensional electromagnetic waves; Refractive index sensor.Abstract
Metamaterials absorbers (MMA) are typically designed with resonators, a continuous metal plane, and a sandwiched dielectric layer. The absorption is based on losses in the dielectric layer caused by magnetic resonances. Such MMAs only allow the absorption of electromagnetic waves in the incoming direction, the electromagnetic wave is completely reflected in the opposite direction, and outside the absorption frequency region, the electromagnetic wave is also almost completely reflected. In this work, we propose an MMA structure that does not use the continuous metal plane, using Gold metal-disk pair resonators instead. MMA is designed for high absorption efficiency at a resonant frequency by overlapping magnetic and electric resonances. Simulation results show that MMA can achieve absorption efficiency up to 98% at 2.15 THz. Because there is no metal plane, MMA still allows transmission of electromagnetic waves outside the absorption frequency region, this property makes MMA more flexible and effective in THz devices.
References
[1]. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express, Vol 20 (2012), pp. 635-643.
[2]. J. Kim, K. Han, K. Fan, X. Zhang, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep, Vol 7 (2017), pp. 6740-9.
[3]. G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers, and near-perfect blackbody emitters”, Sol. Energy Mater. Sol. Cells, Vol 190 (2019), pp. 20-29.
[4]. J. Li, X. Chen, Z. Yi, H. Yang, Y. Tang, Y. Yi, W. Yao, J. Wang, Y. Yi, “Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays”, Mater. Today Energy, Vol 16 (2020), pp. 100390-8.
[5]. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters”, Phys. Rev. Lett. Vol 107(4) (2011), pp. 45901-45905.
[6]. C. Wu, B. Neuner III, J. John, A. Milder, B. Zollars, S. Savoy, G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems”, J. Opt. Vol 14(2) (2012), pp. 024005-7
[7]. E. Ashalley, K. Acheampong, L. V. Besteiro, P. Yu, A. Neogi, A. O. Govorov, Z. M. Wang, “Multitask deep-learning-based design of chiral plasmonic metamaterials”, Photonics Res. Vol 8(7) (2020), pp. 1213-1225.
[8]. X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance”, Phys. Rev. Lett Vol 104(20) (2010), pp. 207403-4.
[9]. B. S. Tung, D. D. Thang, D. H. Luu, V. D. Lam, A. Ohi, T. Nabatame, Y. P. Lee, T. Nagao, H. V. Chung, “Metamaterialenhanced vibrational absorption spectroscopy for the detection of protein molecules”, Sci. Rep. Vol 6 (2016), pp. 32123-7.
[10]. S. Bagheri, N. Strohfeldt, F. Sterl, A. Berrier, A. Tittl, H. Giessen, “Large-area low-cost plasmonic perfect absorber chemical sensor fabricated by laser interference lithography” ACS Sens. Vol 1 (2016), pp. 1148-1154.
[11]. S. Kang, Z. Qian, V. Rajaram, S. D. Calisgan, A. Alù. M. Rinaldi, “Ultra-Narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy”, Adv. Opt. Mater. Vol 7(2) (2019), pp. 1801236-8.
[12]. S. Feng, Y. Zhao, Y-L. Liao, “Dual-band dielectric metamaterial absorber and sensing applications”, Results Phys. Vol 18 (2020), pp. 103272-7.
[13]. N. T. Tung, T. Tanaka, “Characterizations of an infrared polarization-insensitive metamaterial perfect absorber and its potential in sensing applications”, Photonics Nanostructures - Fundam. Appl. Vol 28 (2018), pp. 100-105.
[14]. M. Jiang, F. Hu, Y. Qian, L. Zhang, W. Zhang, J. Han, “Tunable terahertz ban-pass filter based on MEMS reconfigurable metamaterials”, J. Phys. D: Appl. Phys. Vol 53(6) (2019), pp. 065107-8.
[15]. B-X. Wang, Y. He, P. Lou, W. Xing, “Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application”, Nanoscale Adv Vol 2 (2020), pp. 763-769.
[16]. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying
approach to left-handed material design,” Opt. Lett. Vol 31 (2006), pp. 3620-2.
[17]. D. T. Viet, B. S. Tung, L. V. Quynh, N. T. Hien, N. T. Tuan, N. T. Tung, Y. P. Lee, V. D. Lam, “Design, fabrication, and characterization of a perfect absorber using simple cut-wire metamaterials”, Adv. Nat. Sci.:Nanosci. Nanotechnol. Vol 3 (2012), pp. 045014-5.
[18]. D. T. Viet, N. V. Hieu, V. D. Lam, N. T. Tung, “Isotropic metamaterial perfect absorbers using cut-wire-pair structures”, Appl. Phys. Express Vol 8, (2015), pp. 032001-3.
[19]. Z. H. Zhu, C. C. Guo, J. F. Zhang, K. Liu, X. D. Yuan, S. Q. Qin, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width”, Appl. Phys. Express Vol 8(1) (2015), pp. 072602.