NGHIÊN CỨU CHẾ TẠO VÀ ĐẶC TRƯNG TÍNH CHẤT VẬT LIỆU GEOPOLYME ĐÓNG RẮN TỪ BÙN ĐỎ VÀ CAO LANH

94 lượt xem

Các tác giả

Từ khóa:

Geopolyme; Polyme vô cơ; Bùn đỏ; Cao lanh.

Tóm tắt

Trong nghiên cứu này, vật liệu geopolyme trên cơ sở bùn đỏ và cao lanh đã được nghiên cứu chế tạo nhằm tạo ra vật liệu với định hướng ứng dụng trong lĩnh vực xây dựng. Hỗn hợp cao lanh, bùn đỏ được trộn với dung dịch chất hoạt hóa kiềm, Ca(OH)2, nhiệt độ và thời gian dưỡng mẫu khác nhau tạo thành vật liệu geopolyme. Kết quả nghiên cứu cho thấy vật liệu geopolyme chế tạo được sau xử lý đóng rắn bùn đỏ có khả năng cho cường độ chịu nén cao nhất là ~21 MPa. Sự có mặt của Ca(OH)2 tạo ra thành phần C-S-H/C-A-S-H làm tăng cường độ chịu nén của vật liệu chế tạo được.    

Tài liệu tham khảo

[1]. Liu, Y., C. Lin, and Y. Wu, Characterization of red mud derived from a combined Bayer Process and bauxite calcination method. Journal of Hazardous Materials, 2007. 146(1): p. 255-261.

[2]. Hajjaji, W., et al., Composition and technological properties of geopolymers based on metakaolin and red mud. Materials & Design (1980-2015), 2013. 52: p. 648-654.

[3]. Rai Suchita, W.K., Mukhopadhyay J, Yoo Chang Kyoo, Uslu Hasan, Neutralization and utilization of red mud for its better waste management. Arch Environ Sci, 2012. 6: p. 13-33.

[4]. Sahu, R.C., R.K. Patel, and B.C. Ray, Neutralization of red mud using CO2 sequestration cycle. Journal of Hazardous Materials, 2010. 179(1): p. 28-34.

[5]. Tamotia, S.K., Management of red mud. In: International symposium on processing of fines, vol. 2. Jamshedpur: NML Jamshedpur, 2000: p. 430–434.

[6]. Burke, I.T., et al., Speciation of Arsenic, Chromium, and Vanadium in Red Mud Samples from the Ajka Spill Site, Hungary. Environmental Science & Technology, 2012. 46(6): p. 3085-3092.

[7]. Renforth, P., et al., Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: The effects of gypsum dosing. Science of The Total Environment, 2012. 421-422: p. 253-259.

[8]. Liang, W., et al., Effect of strong acids on red mud structural and fluoride adsorption properties. Journal of Colloid and Interface Science, 2014. 423: p. 158-165.

[9]. Deihimi, N., M. Irannajad, and B. Rezai, Equilibrium and kinetic studies of ferricyanide adsorption from aqueous solution by activated red mud. Journal of Environmental Management, 2018. 227: p. 277-285.

[10]. Xie, W.-M., et al., Accelerated crystallization of magnetic 4A-zeolite synthesized from red mud for application in removal of mixed heavy metal ions. Journal of Hazardous Materials, 2018. 358: p. 441-449.

[11]. Belviso, C., et al., Red mud as aluminium source for the synthesis of magnetic zeolite. Microporous and Mesoporous Materials, 2018. 270: p. 24-29.

[12]. Shim, W.G., et al., Recycling of red mud as a catalyst for complete oxidation of benzene. Journal of Industrial and Engineering Chemistry, 2018. 60: p. 259-267.

[13]. Oliveira, A.A.S., et al., Red mud based gold catalysts in the oxidation of benzyl alcohol with molecular oxygen. Catalysis Today, 2017. 289: p. 89-95.

[14]. Alam, S., S.K. Das, and B.H. Rao, Characterization of coarse fraction of red mud as a civil engineering construction material. Journal of Cleaner Production, 2017. 168: p. 679-691.

[15]. Ribeiro, D.V., J.A. Labrincha, and M.R. Morelli, Effect of the addition of red mud on the corrosion parameters of reinforced concrete. Cement and Concrete Research, 2012. 42(1): p. 124-133.

[16]. Davidovits, J., Properties of geopolymer cements. in First international conference on alkaline cements and concretes, 1994.

[17]. Hu, W., et al., Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. Journal of Cleaner Production, 2018. 186: p. 799-806.

[18]. Mijarsh, M.J.A., M.A. Megat Johari, and Z.A. Ahmad, Compressive strength of treated palm oil fuel ash based geopolymer mortar containing calcium hydroxide, aluminum hydroxide and silica fume as mineral additives. Cement and Concrete Composites, 2015. 60: p. 65-81.

[19]. Granizo, M., et al., Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction. Vol. 85. 2004. 225-231.

[20]. Zaharaki, D., M. Galetakis, and K. Komnitsas, Valorization of construction and demolition (C&D) and industrial wastes through alkali activation. Construction and Building Materials, 2016. 121: p. 686-693.

[21]. Kaya, K. and S. Soyer-Uzun, Evolution of structural characteristics and compressive strength in red mud–metakaolin based geopolymer systems. Ceramics International, 2016. 42(6): p. 7406-7413.

[22]. Ascensão, G., et al., Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability. Journal of Cleaner Production, 2017. 148: p. 23-30.

[23]. Garcia-Lodeiro, I., et al., Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cement and Concrete Research, 2011. 41(9): p. 923-931.

Tải xuống

Đã Xuất bản

14-12-2020

Cách trích dẫn

Dũng. “NGHIÊN CỨU CHẾ TẠO VÀ ĐẶC TRƯNG TÍNH CHẤT VẬT LIỆU GEOPOLYME ĐÓNG RẮN TỪ BÙN ĐỎ VÀ CAO LANH”. Tạp Chí Nghiên cứu Khoa học Và Công nghệ quân sự, số p.h 70, Tháng Chạp 2020, tr 111-7, https://online.jmst.info/index.php/jmst/article/view/118.

Số

Chuyên mục

Nghiên cứu khoa học

Các bài báo được đọc nhiều nhất của cùng tác giả

<< < 1 2