Research on fabrication of modified graphene nanoplalelets conductive ink
131 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.97.2024.113-118Keywords:
Conductive ink; Nano graphene.Abstract
In this experiment, we studied and successfully modified graphene with oleic acid, proposed the modification process and selected the optimal 2.5% oleic acid content to modify GNPs. From there, we successfully manufactured conductive ink with CAB binder, ethyl acetate solvent and modified nano-graphene. Through the process of surveying and evaluating the effects on the material synthesis process, the optimal parameters for manufacturing conductive ink are given: ink with a composition ratio of 6% graphene powder (modified with 2,5% oleic acid) and 0.75% cellulose acetate butyrate binder dissolved in ethyl acetate solvent. In this ink formula, the lowest resistance obtained is 22 Ω and the resistivity is 7.56 Ω/cm-2.
References
[1]. H. Lu, H. Yi, L. Jiajie, W. Xiangjian and C. Yongsheng, "Graphene-Based Conducting Inks for Direct Inkjet Printing of Flexible Conductive Patterns and Their Applications in Electric Circuits and Chemical Sensors," Nano Research, (2011).
[2]. G. Yahui, S. Wen, W. Wucong, L. Yuanpeng, Z. Yaping, "Inkjet Printing Patterns of Highly Conductive Pristine Graphene on Flexible Substrates," Industrial & Engineering Chemistry Research, (2014).
[3]. F. Miao, S. Majee, M. Songa, J. Zhao, S.L. Zhang, and Z.B. Zhang, Synth. Met. 220, 318, (2016).
[4]. S. Majee, C. Liu, B. Wu, S.L. Zhang, and Z.B. Zhang, Carbon 114, 77, (2017).
[5]. P. He, B. Derby, "Inkjet Printing Graphene-Based Transparent Conductive Films," Research Gate, (2014).
[6]. E. B.Secor, T. Z.Gao, A. E.Islam, R. Rao and S. G.Wallace, "Enhanced Conductivity, Adhesion, and Environmental Stability of Printed Graphene Inks with Nitrocellulose," Chemistry of Materials, (2017).
[7]. Saurabh Parmar, Bishakha Ray, Kalyani Date and Suwarna Datar, “Modified graphene as a conducting ink for electromagnetic interference shielding”, J. Phys. D: Appl. Phys. 52, 375302, (2019).
[8]. Yaohong Zhang, Guohua Wu, Chao Ding, Feng Liu, Dong Liu, Taizo Masuda, Kenji Yoshino, Shuzi Hayase, Ruixiang Wang, Qing Shen, “Surface Modified Graphene Oxide/Lead Sulfide Hybrid Film Forming Ink for High Efficiency Bulk Nano Heterojunction Colloidal Quantum Dot Solar Cells”, Nano-Micro Lett, 12:111, (2020).
[9]. Fan, H.-L.; Li, L.; Zhou, S.-F.; Liu, Y.-Z. “Continuous preparation of Fe3O4 nanoparticles combined with surface modification by L-cysteine and their application in heavy metal adsorption”. Ceram. Int. 42, 4228–4237, (2016).
[10]. Coenen, K.; Gallucci, F.; Mezari, B.; Hensen, E.; van Sint Annaland, M. “An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites”. J. CO2 Util. 24, 228–239, (2018).
[11]. Hong, R.-Y.; Li, J.-H.; Zhang, S.-Z.; Li, H.-Z.; Zheng, Y.; Ding, J.-M.; Wei, D.-G. “Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids”. Appl. Surf. Sci. 255, 3485–3492, (2009).
[12]. Kooter, I.M.; Pierik, A.J.; Merkx, M.; Averill, B.A.; Moguilevsky, N.; Bollen, A.; Wever, R. “Difference Fourier transform infrared evidence for ester bonds linking the heme group in myeloperoxidase, lactoperoxidase, and eosinophil peroxidase”. J. Am. Chem. Soc. 119, 11542–11543, (1997).
[13]. Ibarra, J.; Melendres, J.; Almada, M.; Burboa, M.G.; Taboada, P.; Juárez, J.; Valdez, M.A. “Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles”. Mater. Res. Express, 2, 095010, (2015).
[14]. K. Arapov, R. Abbel, G. de With, H. Friedrich, Faraday Discuss. 173, 323–336, (2014).
[15]. A. Capasso, A. D. R. Castillo, H. Sun, A. Ansaldo, V. Pellegrini, F. Bonaccorso, Solid State Commun. 224, 53–63, (2015).