Effects of silver incorporation on electrical and optical properties of CuAlxOy thin films
191 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.FEE.2022.294-302Keywords:
Transparent conductive; Delafossite; CuAlxOy thin film; Co-sputtering techniques; Temperature coefficient of resistance; Microbolometers.Abstract
The transparent conductive property based on Ag-doped delafossite nanomaterials are attractive for optical sensing applications due to their good electrical conductivity, good optical transparent and high temperature coefficient of resistance. Several delafossite nanomaterials and Ag-doped nanomaterials have been reported, however, Ag-doped delafossite nanomaterials have not been explored, especially regarding the electrical property with high temperature coefficient of resistance. In this study, Ag-doped delafossite CuAlxOy thin films were deposited by co-sputtering techniques. The electrical properties were carried out on a 4-point prober. The optical properties were characterized on an UV-VIS spectrometer. The results on CuAlxOy doped Ag thin films showed that CuAlxOy doped Ag can be hardly applied for transparent conductive layers. However, these films exhibited relatively high temperature coefficient of resistance of about 3%/K, thus being suitable for applications in microbolometers.
References
[1]. R. D. Shannon, C. T. Prewitt, and D. B. Rogers, “Chemistry of noble metal oxides. II. Crystal structures of platinum cobalt dioxide, palladium cobalt dioxide, coppper iron dioxide, and silver iron dioxide,” Inorg. Chem., vol. 10, no. 4, pp. 719–723, (1971), doi: 10.1021/ic50098a012. DOI: https://doi.org/10.1021/ic50098a012
[2]. R. D. Shannon, D. B. Rogers, C. T. Prewitt, and J. L. Gillson, “Chemistry of noble metal oxides. III. Electrical transport properties and crystal chemistry of ABO2 compounds with the delafossite structure,” Inorg. Chem., vol. 10, no. 4, pp. 723–727, (1971), doi: 10.1021/ic50098a013. DOI: https://doi.org/10.1021/ic50098a013
[3]. R. D. Shannon, D. B. Rogers, and C. T. Prewitt, “Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds,” Inorg. Chem., vol. 10, no. 4, pp. 713–718, (1971), doi: 10.1021/ic50098a011. DOI: https://doi.org/10.1021/ic50098a011
[4]. F. A. Benko and F. P. Koffyberg, “Opto-electronic properties of p- and n-type delafossite, CuFeO2,” J. Phys. Chem. Solids, vol. 48, no. 5, pp. 431–434, (1987), doi: 10.1016/0022-3697(87)90103-X. DOI: https://doi.org/10.1016/0022-3697(87)90103-X
[5]. F. A. Benko and F. P. Koffyberg, “Opto-electronic properties of CuAlO2,” J. Phys. Chem. Solids, vol. 45, no. 1, pp. 57–59, (1984), doi: 10.1016/0022-3697(84)90101-X. DOI: https://doi.org/10.1016/0022-3697(84)90101-X
[6]. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, “P-type electrical conduction in transparent thin films of CuAlO2,” Nature, vol. 389, no. 6654, pp. 939–942, (1997), doi: 10.1038/40087. DOI: https://doi.org/10.1038/40087
[7]. D. S. Ginley and C. Bright, “Transparent Conducting Oxides,” MRS Bull., vol. 25, no. 08, pp. 15–18, (2000), doi: 10.1557/mrs2000.256. DOI: https://doi.org/10.1557/mrs2000.256
[8]. H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, “Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions,” MRS Bull., vol. 25, no. 08, pp. 28–36, (2000), doi: 10.1557/mrs2000.148. DOI: https://doi.org/10.1557/mrs2000.148
[9]. J. MONNIER, “A study of the catalytically active copper species in the synthesis of methanol over Cu$z.sbnd;Cr oxide,” J. Catal., vol. 92, no. 1, pp. 119–126, (1985), doi: 10.1016/0021-9517(85)90241-6. DOI: https://doi.org/10.1016/0021-9517(85)90241-6
[10]. J. Christopher and C. S. Swamy, “Catalytic activity and XPS investigation of dalofossite oxides, CuMO2 (M=Al, Cr or Fe),” J. Mater. Sci., vol. 27, no. 5, pp. 1353–1356, (1992), doi: 10.1007/BF01142052. DOI: https://doi.org/10.1007/BF01142052
[11]. K. Domen, S. Ikeda, T. Takata, A. Tanaka, M. Hara, and J. N. Kondo, “Mechano-catalytic overall water-splitting into hydrogen and oxygen on some metal oxides,” Appl. Energy, vol. 67, no. 1–2, pp. 159–179, (2000), doi: 10.1016/S0306-2619(00)00012-X. DOI: https://doi.org/10.1016/S0306-2619(00)00012-X
[12]. D. Xiong et al., “Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods,” Inorg. Chem., (2014), doi: 10.1021/ic500090g. DOI: https://doi.org/10.1021/ic500090g
[13]. H. Dong et al., “Visible light-induced photocatalytic activity of delafossite AgMO2 (M=Al, Ga, In) prepared via a hydrothermal method,” Appl. Catal. B Environ., vol. 89, no. 3–4, pp. 551–556, (2009), doi: 10.1016/j.apcatb.2009.01.018. DOI: https://doi.org/10.1016/j.apcatb.2009.01.018
[14]. O. Celik and M. Duman, “High temperature coefficient of resistance and low noise tungsten oxide doped amorphous vanadium oxide thin films for microbolometer applications,” Thin Solid Films, vol. 691, p. 137590, (2019), doi: 10.1016/j.tsf.2019.137590. DOI: https://doi.org/10.1016/j.tsf.2019.137590
[15]. R. Mustafa Öksüzoğlu, P. Bilgiç, M. Yıldırım, and O. Deniz, “Influence of post-annealing on electrical, structural and optical properties of vanadium oxide thin films,” Opt. Laser Technol., vol. 48, pp. 102–109, (2013), doi: 10.1016/j.optlastec.2012.10.001.
[16]. R. Mustafa Öksüzoǧlu, P. Bilgiç, M. Yildirim, and O. Deniz, “Influence of post-annealing on electrical, structural and optical properties of vanadium oxide thin films,” Opt. Laser Technol., vol. 48, pp. 102–109, (2013), doi: 10.1016/j.optlastec.2012.10.001. DOI: https://doi.org/10.1016/j.optlastec.2012.10.001
[17]. K. Park, K. Y. Ko, and W. S. Seo, “Effect of partial substitution of Ca for Al on the microstructure and high-temperature thermoelectric properties of CuAlO2,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 129, no. 1–3, pp. 1–7, (2006), doi: 10.1016/j.mseb.2005.10.035. DOI: https://doi.org/10.1016/j.mseb.2005.10.035
[18]. K. Park, K. Y. Ko, J. K. Seong, and S. Nahm, “Microstructure and high-temperature thermoelectric properties of polycrystalline CuAl1-xMgxO2 ceramics,” J. Eur. Ceram. Soc., vol. 27, no. 13–15, pp. 3735–3738, (2007), doi: 10.1016/j.jeurceramsoc.2007.02.030. DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.02.030
[19]. K. Park, K. Y. Ko, H.-C. Kwon, and S. Nahm, “Improvement in thermoelectric properties of CuAlO2 by adding Fe2O3,” J. Alloys Compd., vol. 437, no. 1–2, pp. 1–6, (2007), doi: 10.1016/j.jallcom.2006.07.067. DOI: https://doi.org/10.1016/j.jallcom.2006.07.067
[20]. S. Yanagiya, N. Van Nong, J. Xu, and N. Pryds, “The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate,” Materials (Basel)., vol. 3, no. 1, pp. 318–328, (2010), doi: 10.3390/ma3010318. DOI: https://doi.org/10.3390/ma3010318
[21]. J. Gu et al., “p -Type CuRhO 2 as a Self-Healing Photoelectrode for Water Reduction under Visible Light,” J. Am. Chem. Soc., vol. 136, no. 3, pp. 830–833, (2014), doi: 10.1021/ja408876k. DOI: https://doi.org/10.1021/ja408876k
[22]. M. Abdel-Rahman et al., “Temperature coefficient of resistance and thermal conductivity of Vanadium oxide ‘Big Mac’ sandwich structure,” Infrared Phys. Technol., vol. 71, pp. 127–130, (2015), doi: 10.1016/j.infrared.2015.03.006. DOI: https://doi.org/10.1016/j.infrared.2015.03.006
[23]. F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” (2007), vol. 6836, p. 68360D, doi: 10.1117/12.755128. DOI: https://doi.org/10.1117/12.755128
[24]. P. Sharma, X. Sun, G. Parish, and A. Keating, “Optimising porous silicon electrical properties for thermal sensing applications,” Microporous Mesoporous Mater., vol. 312, p. 110767, (2021), doi: 10.1016/j.micromeso.2020.110767. DOI: https://doi.org/10.1016/j.micromeso.2020.110767
[25]. P. Sharma, J. Dell, G. Parish, and A. Keating, “Engineering 1/f noise in porous silicon thin films for thermal sensing applications,” Microporous Mesoporous Mater., vol. 324, p. 111302, (2021), doi: 10.1016/j.micromeso.2021.111302. DOI: https://doi.org/10.1016/j.micromeso.2021.111302