Effect of additives on fire protection performance of epoxy-based intumescent retardant coating for steel application
222 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.85.2023.53-58Keywords:
Intumescent retardant coating; Al(OH)3; Nanoclay; Steel.Abstract
In this paper, we will investigate the influence of Al(OH)3 and nanoclay on the fire performance of epoxy-based intumescent retardant coatings. The fire protection properties of the intumescent retardant coatings were characterized by a scanning electric microscope (SEM), Energy dispersive X-ray spectroscopy (EDS), Fourier transformation infrared spectroscopy (FTIR), and Thermal gravimetric analysis (TGA). The results showed that, the sample added 5% Al(OH)3 decreased the plate’s backside temperature of 98-degree celsius compared to the control sample. Besides, char expansion and char residue of the sample added Al(OH)3 have values of 21 times and 17.42% respectively while these values of the control sample have 10 times and 12.61%. Therefore, Al(OH)3 is the most suitable candidate for improving the fire performance of the epoxy-based intumescent retardant coating for steel application in case of fire.
References
[1]. S. Duquesne, S. Magnet, C. Jama, R. Delobel, “Intumescent Paints: Fire protective coating for metallic substrates,” Surf. Coat. Technol., Vol 180-181, pp. 302-307, (2004). DOI: https://doi.org/10.1016/j.surfcoat.2003.10.075
[2]. R. G. Puri, A. S. Khanna, “Intumescent coating: A review on recent progress,” J. Coat. Technol. Res., Vol. 14, No. 1, pp. 1-20, (2017). DOI: https://doi.org/10.1007/s11998-016-9815-3
[3]. J. Alongi, Z. Han, S. Bourbigot, “Intumescent: Tradition versus novelty. A comprehensive review,” Progress in Polymer Science, Vol 51, pp. 28-73, (2015). DOI: https://doi.org/10.1016/j.progpolymsci.2015.04.010
[4]. J. B. Zoleta et al., “Improved pyrolysis behavior of ammonium polyphosphate-melamine-expandable (APP-MEL-EG) intumescent fire retardant coating system using ceria and dolomite as additives for I-beam steel application,” Heliyon, Vol 6, pp. e03119, (2020). DOI: https://doi.org/10.1016/j.heliyon.2019.e03119
[5]. W. C. Puspitasari et al., “The study of adhesion between steel substrate, primer, and char of intumescent fire retardant coating,” Progress in Organic Coatings, Vol 127, pp. 181-193, (2019). DOI: https://doi.org/10.1016/j.porgcoat.2018.11.015
[6]. A. F. Baldissera, et al., “Assessment of lignin as a carbon source in intumescent coatings containing polyaniline,” J. Coat. Technol. Res., Vol 17, pp. 1-11, (2020). DOI: https://doi.org/10.1007/s11998-020-00348-x
[7]. R. G. Puri, A. S. Khanna, “Influence of heat-stable filler on the thermal shielding performance of water-based intumescent fire-resistive coating for structural steel applications,” J. Coat. Technol. Res., Vol. 14, No. 2, pp. 323-331, (2017). DOI: https://doi.org/10.1007/s11998-016-9850-0
[8]. Y. M. Evtushenko, Y. A. Grigoriev, T. A. Rudakova, A. N. Ozerin, “Effect of aluminum hydroxide on the fireproofing properties of ammonium polyphosphate-pentaerythritol-based intumescent coating,” J. Coat. Technol. Res., Vol. 16, No. 5, pp. 1389-1398, (2019). DOI: https://doi.org/10.1007/s11998-019-00221-6
[9]. C.S. Chuang, H.J. Sheen, “Effects of added nanoclay for styrene-acrylic resin on intumescent fire retardancy and CO/CO2 emission,” J. Coat. Technol. Res., Vol 17, pp. 115-125, (2019). DOI: https://doi.org/10.1007/s11998-019-00246-x
[10]. J. Kaur, F. Ahmad, S. Ullah, P. S. M. Megat Yusoff, R. Ahmad, “The role of bentonite clay on improvement in char adhesion of intumescent fire-retardant coating with steel substrate,”, Arab J. Sci. Eng., Vol 42, pp. 2043-2053, (2017). DOI: https://doi.org/10.1007/s13369-017-2423-4
[11]. E. D. Weil, “Fire-protective and flame-retardant coatings-a state-of-the-art review,” J. Fire Sci., Vol 29, pp. 259-296, (2011). DOI: https://doi.org/10.1177/0734904110395469
[12]. M. Zia-ul-Mustafa et al., “Thermal and pyrolysis analysis of minerals reinforced intumescent fire retardant coating,” Progress in Organic Coat., Vol 102, pp.201-216, (2017). DOI: https://doi.org/10.1016/j.porgcoat.2016.10.014
[13]. G. Camino, L. Costa, L. Trossarelli, F. Costanzi, A. Pagliari, “Study of the mechanism of intumescent in fire retardant polymers: Part VI-Mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures,” Polym. Degrad. Stab., Vol 12, pp.213-228, (1985). DOI: https://doi.org/10.1016/0141-3910(85)90090-4