Deep learning models approach for maritime radar target data classification

16 views

Authors

  • Nguyen Doan Cuong Institute of Information Technology, Academy of Military Science and Technology
  • Vo Xung Ha Institute of Radar, Academy of Military Science and Technology
  • Mai Dinh Sinh Military Technical Academy
  • Nguyen Viet Hung Regiment 351, Naval Region 3
  • Truong Quoc Hung Military Technical Academy
  • Pham Van Nha (Corresponding Author) Institute of Information Technology, Academy of Military Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.100.2024.106-112

Keywords:

Maritime radar; Deep learning; Target classification; Recurrent Neural Networks (RNN); Convolutional Neural Networks (CNN).

Abstract

In maritime ra đa systems, reflection signals play a crucial role in target identification. The application of machine learning techniques, such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs), has gained the attention of researchers in the field of ra đa data analysis. Both theoretical and experimental results demonstrate that these techniques can enhance ra đa target classification performance by utilizing a diverse amount of target data. However, the limited availability of real ra đa data has constrained the development of ra đa data analysis techniques. In this paper, we focus on analyzing and evaluating the performance of classification models, including SCNet, TARAN, TACNN, and RFRAN. We conduct experiments and fine-tune several parameters to improve classification performance. Experiments were carried out on Doppler ra đa and maritime ra đa datasets. The results show that SCNet and RFRAN can be optimized to effectively assist in maritime radar target recognition.

References

[1]. N.V. Hùng, “Tài liệu huấn luyện trắc thủ ra đa hàng hải ,” Quân chủng Hải quân, (2014).

[2]. P. V. Du, “Nhiệm vụ: Xây dựng hệ thống thu thập CSDL tín hiệu mục tiêu ra đa chủ động và hỗ nhận dạng mục tiêu cho hệ thống ra đa hàng hải SCORE-3000 ,” Quân chủng Hải quân, (2018).

[3]. L. Du, H. Liu, Z. Bao, “Radar HRRP statistical recognition based on hypersphere model”, Signal Process., 88 (5), pp. 1176-1190, (2008). DOI: https://doi.org/10.1016/j.sigpro.2007.11.003

[4]. Hao Wan, Xu Si, Peikun Zhu, Jing Liang, “Target recognition via discriminant information and geometrical structure co-learning using radar sensor network”, Pattern Recognition, Volume 157, 110931, (2025). DOI: https://doi.org/10.1016/j.patcog.2024.110931

[5]. Kexin Huang, Yizhen Jia, Wen-Qin Wang, “FDA-MIMO Radar Target Recognition Based on SVM Classification with Multi-channel Feature Extraction”, Procedia Computer Science, Volume 221, pp. 1513-1518, (2023). DOI: https://doi.org/10.1016/j.procs.2023.07.008

[6]. Xianwen Zhang, Wenying Wang, Xuanxuan Zheng, Yao Wei, “A novel ra đa target recognition method for open and imbalanced high-resolution range profile”, Digital Signal Processing, Volume 118, 103212, (2021). DOI: https://doi.org/10.1016/j.dsp.2021.103212

[7]. Bin Xu, Bo Chen, Jinwei Wan, Hongwei Liu, Lin Jin, “Target-Aware Recurrent Attentional Network for Ra đa HRRP Target Recognition”, Signal Processing, Vol. 155, pp. 268-280, (2019). DOI: https://doi.org/10.1016/j.sigpro.2018.09.041

[8]. Jian Chen, Lan Du, Guanbo Guo, Linwei Yin, Di Wei, “Target-attentional CNN for Radar Automatic Target Recognition with HRRP”, Signal Processing, Vol. 196, 108497, (2022). DOI: https://doi.org/10.1016/j.sigpro.2022.108497

[9]. Chen Jian, Du Lan, He Hua, Guo Yuchen, “Convolutional factor analysis model with application to ra đa automatic target recognition”, Pattern Recognition, Volume 87, pp. 140-156, (2019). DOI: https://doi.org/10.1016/j.patcog.2018.10.014

[10]. Daiying Zhou, Xiaofeng Shen, Wanlin Yang, “Radar target recognition based on fuzzy optimal transformation using high-resolution range profile”, Pattern Recognition Letters, Volume 34, Issue 3, pp. 256-264, (2013). DOI: https://doi.org/10.1016/j.patrec.2012.10.010

[11]. Chuan Du, Long Tian, Bo Chen, Lei Zhang, Wenchao Chen, Hongwei Liu, “Region-factorized recurrent attentional network with deep clustering for radar HRRP target recognition”, Signal Processing, Vol. 183, 108010, (2021). DOI: https://doi.org/10.1016/j.sigpro.2021.108010

[12]. Qi Liu, Xinyu Zhang, Yongxiang Liu, “SCNet: Scattering center neural network for ra đa target recognition with incomplete target-aspects”, Signal Processing, Vol. 219, 109409, (2024). DOI: https://doi.org/10.1016/j.sigpro.2024.109409

[13]. I. Roldan, C.R. del-Blanco, Á.D. de Quevedo, F.I. Urzaiz, J.G. Menoyo, A.A. López, D. Berjón, F. Jaureguizar, N. García, “DopplerNet: a convolutional neural network for recognising targets in real scenarios using a persistent range–Doppler radar”, IET Radar, Sonar & Navigation, (2020). DOI: https://doi.org/10.1049/iet-rsn.2019.0307

[14]. Hai Le et al., “Micro-Doppler-Ra đa-Based UAV Detection Using Inception-Residual Neural Network”, International Conference on Advanced Technologies for Communications, (2020).

Published

25-12-2024

How to Cite

Nguyễn Doãn Cường, Võ Xung Hà, Mai Đình Sinh, Nguyễn Việt Hùng, Trương Quốc Hùng, and P. Van Nha. “Deep Learning Models Approach for Maritime Radar Target Data Classification”. Journal of Military Science and Technology, vol. 100, no. 100, Dec. 2024, pp. 106-12, doi:10.54939/1859-1043.j.mst.100.2024.106-112.

Issue

Section

Information technology & Applied mathematics