Asymptotic stability of dynamical systems with Barbalat’s lemma and Lyapunov function
248 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.CSCE6.2022.122-130Keywords:
Lemma Barbalat; Lyapunov function; Theorem Lagrange; Asymptotic stability; Non-autonomous system.Abstract
The article explains Barbalat’s lemma, combining the application of Barbalat’s lemma, the Lyapunov function, and the theorem Lagrange to ensure mathematical certainty in analyzing the asymptotic stability of a non-autonomous control system. Research results are illustrated and simulated with visual examples of uncontrolled and controlled dynamical systems.
References
[1]. Hung JY, Gao W, Hung JC, “Variable Structure Control: A Survey”, IEEE Transaction on Industrial Electronics, Vol. 40, No. 1, pp. 2-22, (1993). DOI: https://doi.org/10.1109/41.184817
[2]. Ying-Ying M., L. Yun-Gang, “Barbalat lemma and its application in analysis of system stability”, Journal of Shandong University (Engineering Science), 37(1), 51–56, (2007).
[3]. Slotine and Li, “Applied nonlinear control”, Prentice Hall, pp. 125, (1991).
[4]. Khalil, H. K., “Nonlinear systems”, Englewood Cliffs, NJ: Prentice Hall, (1996).
[5]. Hou, M., Duan, G., & Guo, M., “New versions of Barbalat’s lemma with applications”, Journal of Control Theory, (2010). DOI: https://doi.org/10.1007/s11768-010-8178-z
[6]. Narendra, K. S., & Annaswamy, M., “Stable adaptive systems”, New York, NY: Dover Publications Inc, (2005).
[7]. Yu, X., & Wu, Z., “Corrections to Stochastic Barbalats lemma and its applications”, IEEE Transactions on Automatic Control, 59, 1386–1390, (2014). DOI: https://doi.org/10.1109/TAC.2013.2283752
[8]. Nguyễn Ngọc Cư, Lê Huy Đạm, Trịnh Danh Đằng, Trần Thanh Sơn, “Giải tích 1”, Nhà xuất bản ĐHQG, Hà Nội, (2004).
[9]. Nguyen Thi Thu Thao, Vu Quoc Huy, “Sliding mode control with exponent sliding surface-reaching law in the tracking drive systems using synchronous servo at torque-position mode”, Journal of Military Science and Technology, No. 80, pp. 31-38, (2022).