Study on fabrication of metallic Titanium from secondary Titanium slag of Binh Dinh titanium minerals using magnesiothermic reduction method
237 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.VITTEP.2022.23-29Keywords:
Secondary titanium slag; Titanium; Magnesiothermic; SEM; EDX; XRD.Abstract
Titanium and its alloys are used in aviation, marine, medical, chemical and other fields because of their superior properties, such as low density, good corrosion resistance, high strength and biocompatibility. This paper presented a study on the possibility of producing metal titanium from secondary titanium slag by magnesiothermic reduction. The prepared products were characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and electron microscopy (SEM). The research results show that the magnesiothermic reduction method is capable of producing Ti metal directly from the secondary titanium slag with high recovery efficient. The resulting product is high-purity porous titanium, with a titanium content of up to 94,68% (without unfavourable impurities). The properties of Ti meet the requirements for the production of high-quality titanium alloys.
References
[1]. Haiyan Zheng, Hiromasa Ito and Toru H. Okabe., “Production of Titanium Powder by the Calciothermic Reduction of Titanium Concentrates or Ore Using the Preform Reduction Process”, Materials Transactions, Vol. 48, No 8, pp. 2244 – 2251, (2007). DOI: https://doi.org/10.2320/matertrans.MER2007115
[2]. Ernests platacis, imants Kaldre, Ervīns Blumbergs, Linards Goldšteins & Vera Serga, “Titanium production by magnesium thermal reduction in the electroslag process”, Scientific Reports 9, Article number: 17566 (2019). DOI: https://doi.org/10.1038/s41598-019-54112-2
[3]. Ротач В.Я. “Теория автоматического управления: учебник для вузов”. М.: Изд-во МЭИ, 400 с, (2005).
[4]. Zhang Y, Fang ZZ, Xia Y et al. “Hydrogen assisted magnesiothermic reduction of TiO2”. Chem Eng J 308, p. 299 – 310, (2017). DOI: https://doi.org/10.1016/j.cej.2016.09.066
[5]. Nersisyan HH, Won HI, Won CW et al. “Direct magnesiothermic reduction of titanium dioxide to titanium powder through combustion synthesis”. Chem Eng J 235, p. 67 - 74, (2014). DOI: https://doi.org/10.1016/j.cej.2013.08.104
[6]. Kan X, Ding J, Zhu H et al. “Low temperature synthesis of nanoscale titanium nitride via molten-salt-mediated magnesiothermic reduction”. Powder Technol 315, p. 81 - 86, (2017). DOI: https://doi.org/10.1016/j.powtec.2017.03.042
[7]. Nersisyan HH, Won HI, Won CW et al. “Combustion synthesis of porous titanium microspheres”. Mater Chem Phys 141, p. 283 - 288, (2013). DOI: https://doi.org/10.1016/j.matchemphys.2013.05.012
[8]. Wei Lv, Xuewei Lv, Junyi Xiang, Kai Hu, Shiqing Zhao, Jie Dang, Kexi Han, Bing Song. "Effect of preoxidation on the reduction of ilmenite concentrate powder by hydrogen". International journal of hydrogen energy 44, p. 4031 - 4040, (2019). DOI: https://doi.org/10.1016/j.ijhydene.2018.12.139
[9]. Rafael Bolivar, Bernd Friedrich. “Magnesiothermic Reduction from Titanium Dioxide to Produce Titanium Powder”. Journal of Sustainable Metallurgy, 5, p. 219 - 229, (2019). DOI: https://doi.org/10.1007/s40831-019-00215-z
[10]. Oosterhof C, Reitz J, Bolivar RBF. “Potentiale alternativer Herstellungskonzepte für Titanmetall und Titanlegierungen”. In: 44. Metallurgische Seminar des Fachausschusses für Metallurgische, p. 131 - 162, (2010).
[11]. Bolívar R, Friedrich B. “Synthesis of titanium via magnesiothermic reduction of TiO2 (pigment)”. Proc Eur Metall Conf EMC 2009, p. 1235 - 1254, (2009).
[12]. Vladislav Ria, Hayk Nersisyana,b, Suk Cheol Kwona, Jong Hyeon Leea, Hoyoung Suhc, Jin-Gyu Kim. “A thermochemical and experimental study for the conversion of ilmenite sand into fine powders of titanium compounds”. Materials Chemistry and Physics 221, p. 1 - 10, (2019). DOI: https://doi.org/10.1016/j.matchemphys.2018.09.031