Tổng hợp carbon aerogel hoạt hóa bằng KOH để loại bỏ thuốc nhuộm Crystal violet hiệu quả ra khỏi nước
208 lượt xemDOI:
https://doi.org/10.54939/1859-1043.j.mst.VITTEP.2022.51-61Từ khóa:
Activated carbon aerogel; Hiệu quả; Crystal violet.Tóm tắt
Trong nghiên cứu này, một sản phẩm carbon aerogel hoạt hóa bằng KOH (AJCA) từ mít được điều chế bằng quá trình xử lý thủy nhiệt lõi của mít với tốc độ gia nhiệt khác nhau. AJCA được tổng hợp để hấp thụ thuốc nhuộm màu tím pha lê Crystal violet (CV) từ dung dịch nước và xử lý hiệu quả các loại thuốc nhuộm khác. Kính hiển vi điện tử quét (SEM) và quang phổ tia X phân tán năng lượng (EDS) cho thấy bề mặt mẫu có nhiều rãnh có độ sâu khác nhau và nhiều lớp vảy xếp chồng lên nhau.. Diện tích bề mặt riêng được kiểm tra bằng phương pháp The Brunauer-Emmett-Teller (BET), đạt 592,65 m2/g. Tốc độ gia nhiệt phù hợp nhất là 3 độ mỗi phút (AJCA-3). Khả năng hấp phụ tối đa là 386,66 mg/g và hiệu suất hấp thụ đạt 96,5% ở nồng độ 300 ppm, điều này cho thấy AJCA-3 rất hiệu quả và có khả năng cạnh tranh với một số chất hấp phụ. Mô hình bậc hai giả mô tả thỏa đáng động học hấp phụ, và mô hình Langmuir thích hợp để biểu diễn cân bằng hấp phụ. Những thí nghiệm này cho thấy rằng AJCA có tiềm năng tuyệt vời trong việc xử lý các chất sinh màu thực.
Tài liệu tham khảo
[1]. T.C.A. Siqueira, L.Z. da Silva, A.J. Rubio, R. Bergamasco, F. Gasparotto, EAd-S Paccola, et al. “Sugarcane bagasse as an efficient biosorbent for methylene blue removal: kinetics, isotherms and thermodynamics”, Int J Environ Res Publ Health, 17, p. 526, (2020). DOI: https://doi.org/10.3390/ijerph17020526
[2]. S. Noreen, M. Tahira, M. Ghamkhar, I. Hafiz, H.N. Bhatti, R. Nadeem, et al. “Treatment of textile wastewater containing acid dye using novel polymeric graphene oxide nanocomposites (GO/PAN,GO/PPy, GO/PSty)”, J Mater Res Technol, 14, pp. 25-35, (2021). DOI: https://doi.org/10.1016/j.jmrt.2021.06.007
[3]. Organization for Economic Co-operation and Development, Eco-Innovation in Industry, Enabling Green Growth, OECD Innovation Strategy, OECD, Paris, (2009).
[4]. P. Grassi, F.C. Drumm, S.S. Spannemberg, J. Georgin, D. Tonato, M.A. Mazutti, et al. “Solid wastes from the enzyme production as a potential biosorbent to treat colored effluents containing crystal violet dye”, Environ Sci Pollut Res, 27, pp. 10484-10494, (2020). DOI: https://doi.org/10.1007/s11356-020-07664-0
[5]. H. Ali, S.K. Muhammad, “Biosorption of crystal violet from the water on leaf biomass of Calotropis procera”, Environ Sci Technol 1, 143–150, (2008). DOI: https://doi.org/10.3923/jest.2008.143.150
[6]. R.F. Wang, L.G. Deng, K. Li, X.J. Fan, W. Li, H.Q. Lu, “Fabrication and characterization of sugarcane bagasse–calcium carbonate composite for the efficient removal of crystal violet dye from wastewater”, Ceram Int, 46, pp. 27484-27492, (2020). DOI: https://doi.org/10.1016/j.ceramint.2020.07.237
[7]. V. Buscio, V. López-Grimau, M.D. Álvarez, C. Gutiérrez-Bouzán, “Reducing the environmental impact of textile industry by reusing residual salts and water: ECUVal system”, ChemEng J 373, 161–170, (2019). DOI: https://doi.org/10.1016/j.cej.2019.04.146
[8]. C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, “A critical review on textile wastewater treatments: possible approaches”, J. Environ. Manag. 182, 351–366, (2016). DOI: https://doi.org/10.1016/j.jenvman.2016.07.090
[9]. Z. Jia, Z. Li, T. Ni, S. Li, “Adsorption of low-cost adsorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: kinetics, isotherms and thermodynamic studies”, J Mol Liq, 229, pp. 285-292, (2017). DOI: https://doi.org/10.1016/j.molliq.2016.12.059
[10]. K. Lee, L. Shabnam, S.N. Faisal, V.C. Hoang, V.G. Gomes, “Aerogel from fruit biowaste produces ultracapacitors with high energy density and stability”, Journal of Energy Storage 27, 101152, (2020). DOI: https://doi.org/10.1016/j.est.2019.101152
[11]. Maji, Subrata, et al. “High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from Artocarpus heterophyllus Seed”. ACS Applied Energy Materials, 4(11), 12257-12266, (2021). DOI: https://doi.org/10.1021/acsaem.1c02051
[12]. DAT, Nguyen Tien, et al. “Carbon sequestration through hydrothermal carbonization of expired fresh milk and its application in supercapacitor”. Biomass and Bioenergy, 143: 105836, (2020). DOI: https://doi.org/10.1016/j.biombioe.2020.105836
[13]. Dabrowski, A., “Adsorption - from theory to practice”. Advances in Colloid and Interface Science, 93: p. 135-224, (2001). DOI: https://doi.org/10.1016/S0001-8686(00)00082-8
[14]. Othman, N.H., et al., “Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide”. Journal of Environmental Chemical Engineering, 6(2): p. 2803-2811, (2018). DOI: https://doi.org/10.1016/j.jece.2018.04.024
[15]. Gupta, N., A.K. Kushwaha, and M.C. Chattopadhyaya, “Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution”. Arabian Journal of Chemistry, 9: p. S707-S716, (2016). DOI: https://doi.org/10.1016/j.arabjc.2011.07.021
[16]. Akar, E., A. Altinişik, and Y. Seki, “Using of activated carbon produced from spent tea leaves for the removal of malachite green from aqueous solution”. Ecological Engineering, 52, p. 19-27, (2013). DOI: https://doi.org/10.1016/j.ecoleng.2012.12.032
[17]. Qiu, H., et al., “Critical review in adsorption kinetic models”. Journal of Zhejiang University-SCIENCE A, 10(5), p. 716-724, (2009).
[18]. K. Vasanth KumarV, R., Sivanesan, “Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae”. Dyes and Pigments, 69, p. 102-107, (2006). DOI: https://doi.org/10.1016/j.dyepig.2005.02.005
[19]. Largitte, L. and R. Pasquier, “A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon”. Chemical Engineering Research and Design. 109, p. 495-504, (2016). DOI: https://doi.org/10.1016/j.cherd.2016.02.006
[20]. Qiu, H., et al., “Critical review in adsorption kinetic models”. Journal of Zhejiang University-science a. 10(5), p. 716-724, (2009). DOI: https://doi.org/10.1631/jzus.A0820524
[21]. Y. S. Ho, G.M., “The kinetics of sorption of divalent metal ions onto sphagnum moss peat”. Water Research. 34(3), p. 735-742, (2000). DOI: https://doi.org/10.1016/S0043-1354(99)00232-8
[22]. C. Hessel, C. Allegre, M. Maisseu, F. Charbit, P. Moulin, “Guidelines and legislation for dye house effluents”, J. Environ. Manag. 83 (2), 171–180, (2007). DOI: https://doi.org/10.1016/j.jenvman.2006.02.012
[23]. Qingsong Ji, Haichao Li, “High surface area activated carbon derived from chitin for efficient adsorption of Crystal Violet”, Diamond and Related Materials, 118, 108516, (2021). DOI: https://doi.org/10.1016/j.diamond.2021.108516
[24]. Annadurai, G., Juang, R.-S., & Lee, D.-J. “Use of cellulose-based wastes for adsorption of dyes from aqueous solutions”. Journal of Hazardous Materials, 92, 263–274, (2004). DOI: https://doi.org/10.1016/S0304-3894(02)00017-1
[25]. Atmani, F., Bensmaili, A., & Mezenner, N. Y. “Synthetic textile effluent removal by skin almond waste”. Journal of Environmental Science and Technology, 2, 153–169, (2009). DOI: https://doi.org/10.3923/jest.2009.153.169
[26]. Chowdhury, S., Mishra, R., Saha, P., & Kushwaha, P. “Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk”. Desalination, 265, 159–168, (2011). DOI: https://doi.org/10.1016/j.desal.2010.07.047
[27]. Druzian, Susanne P., et al. “Chitin-psyllium based aerogel for the efficient removal of crystal violet from aqueous solutions”. International Journal of Biological Macromolecules, 179, 366-376, (2021). DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.179
[28]. Gong, Xiao-Li, et al. "Effective adsorption of crystal violet dye on sugarcane bagasse–bentonite/sodium alginate composite aerogel: Characterisation, experiments, and advanced modelling." Separation and Purification Technology, 286, 120478, (2022). DOI: https://doi.org/10.1016/j.seppur.2022.120478
[29]. Gopakumar, Deepu A., et al. "Robust superhydrophobic cellulose nanofiber aerogel for multifunctional environmental applications." Polymers 11.3, 495, (2019). DOI: https://doi.org/10.3390/polym11030495
[30]. Liu, Cuiyun, et al. "In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal." Journal of Alloys and Compounds 714: 522-529, (2017). DOI: https://doi.org/10.1016/j.jallcom.2017.04.245