Influence of dispersion properties on pulse propagation in GeSe2-As2Se3-PbSe chalcogenide photonic crystal fibers

64 views

Authors

  • Le Van Hieu Faculty of Natural Sciences, Hong Duc University
  • Nguyen Tra My Faculty of Natural Sciences, Hong Duc University
  • Tran Hong Tham Faculty of Natural Sciences, Hong Duc University
  • Nguyen Thi Thao Faculty of Natural Sciences, Hong Duc University
  • Nguyen Xuan Thuan Faculty of Natural Sciences, Hong Duc University
  • Ho Dinh Quang (Corresponding Author) School of Chemistry, Biology and Environment, Vinh University

DOI:

https://doi.org/10.54939/1859-1043.j.mst.97.2024.129-137

Keywords:

Photonic crystal fiber; Dispersion; Chalcogenide; Nonlinear.

Abstract

 In this paper, we present the results of a study on pulse propagation in photonic crystal fibers made from GeSe2-As2Se3-PbSe chalcogenide. We employ the Slip-Step-Fourier method to solve the general nonlinear Schrödinger equation, seeking solutions for the output pulse during the propagation in the photonic crystal fiber. The results indicate that the dispersion properties significantly influence the characteristics of the output pulse, including spectral broadening and pulse stability. Using a photonic crystal fiber with a length of 10 cm, where the input pulse is a Gaussian pulse with a frequency of f = 200 fs, pump pulse energy E = 1.5 nJ, corresponding to a pump intensity of P = 7.5 kW, at a pump wavelength λ = 3500 nm, if the dispersion properties are adjusted so that the pump wavelength can shift from the normal dispersion region to the anomalous dispersion region, the obtained output pulse exhibits increased spectral width (corresponding to 2600 nm and 7000 nm). However, the output pulse, in this case, is characterized by higher noise and reduced stability. The research findings present a viable solution for modifying the characteristics of output pulses applicable to supercontinuum light sources.

References

[1]. H. Liu, Y. Yu, W. Song, Q. Jiang, F. Pang, “Recent development of flat supercontinuum generation in specialty optical fibers,” Opto-Electronic Advances, Vol. 2, No.2, pp. 2096-479, (2019).

[2]. H. Tu, S. A. Boppart, “Coherent fiber supercontinuum for biophotonic,” Laser Photonics Rev, Vol. 7, No. 5, pp.628-645, (2013).

[3]. H. Liu, Y. Yu, W. Song, Q. Jiang, F. Pang, “Recent development of flat supercontinuum generation in specialty optical fibers,” Opto-Electronic Advances, Vol. 2, No. 2, pp. 1-9, (2019).

[4]. G. Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. St. J. Russell, M. J. Lederer, D. Kopf, K. Wiesauer, E. I. Breuer, D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Optics Express Vol. 14, No. 4 , pp. 1596-1603, (2006).

[5]. J.M. Dudley, G. Genty, S. Coen, “Supercontinuum generation is photonic crystal fiber,” Review of Modern Physics, Vol. 78, pp. 1135-1184, (2006).

[6]. H. V. Le, V. C. Long, H. T. Nguyen, A. M. Nguyen, R. Buczyński, R. Kasztelanic, “Application of ethanol infiltration for ultra-flattened normal dispersion in fused silica photonic crystal fibers,” Laser Physics, Vol. 28, No. 11, pp.115106, (2018).

[7]. K. Saitoh, N. Florous, M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Optics Express, Vol. 13, No. 21, pp. 8365-8371, (2005).

[8]. C. Goncalves, M. Kang, B-U. Sohn, G. Yin, J. Hu, D. T. H. Tan, K. Richardson, “New candidate multicomponent chalcogenide glasses for supercontinuum generation,” Applied Sciences, Vol. 8, No. 11, pp. 1-20, (2018).

[9]. L. C. Van, V. T. Hoang, V. C. Long, K, Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczynski, J. Pniewski, “Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene,” Laser Physics, Vol. 30, No. 3, pp. 035105, (2020).

[10]. C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Physics, Vol. 29, No. 7, pp. 075107, (2019).

[11]. H. V. Le, V. T. Hoang, H. T. Nguyen, V. C. Long, R. Buczynski, R. Kasztelanic, “Supercontinuum generation in photonic crystal fibers infiltrated with tetrachloroethylene,” Optical and Quantum Electronic, Vol. 53, No. 187, pp. 1-18, (2021).

[12]. H. L.Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. M. Nguyen, R. Kasztelanic, “Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water-ethanol mixture,” Optics Communications, Vol. 407, pp. 417-422, (2018).

[13]. B. C. Van, D. Q. Ho, V. V. Hung, H. L. Van, “Simulation Study on Supercontinuum Generation at Normal Dispersion Regime of a Carbon Disulfide-core Photonic Crystal Fiber,” Communications in Physics, Vol. 31, No. 2, pp.169-178, (2021).

[14]. Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak, R. Buczyński, “Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses,” Applied Optics, Vol. 57, No. 14, pp. 3738-3746, (2018).

[15]. G. Qin, X. Yan, C. Kito M. Liao, C. Chaudhari, T. Suzuki, Y.Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Applied Physics Letters, Vol. 95, No. 16 , pp.1-4, (2009).

[16]. H. L. Van, V. T. Hoang, T. L. Canh, Q. H. Dinh, H. T. Nguyen, N. V. T. Minh, M. Klimczak, R. Buczynski, R. Kasztelanic, “Silica-based photonic crystal fiber infiltrated with 1,2-dibromoethane for supercontinuum generation,” Applied Optics, Vol. 60, No. 24, pp. 7268-7278, (2021).

[17]. P. Domachuk et. al., “Over 4000 nm bandwidth of Mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express, Vol. 16, No. 10, pp. 7161-7168, (2008).

[18]. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Optics Letters, Vol. 43, No. 5, pp. 999-1002, (2018).

[19]. M. Klimczak, B. Siwicki, H. Heidt R. Buczynski, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photonics Research, Vol. 5, No. 6, pp. 710-727, (2017).

[20]. Y. S. Kivshar, G. P. Agrawal, “Optical Solitons: From Fibers to Photonic Crystals”, Academic Press, Elsevier, (2003).

Published

25-08-2024

How to Cite

Le, . V. H., . T. M. Nguyen, H. T. Tran, T. T. Nguyen, X. T. Nguyen, and Đình Q. Ho. “Influence of Dispersion Properties on Pulse Propagation in GeSe2-As2Se3-PbSe Chalcogenide Photonic Crystal Fibers”. Journal of Military Science and Technology, vol. 97, no. 97, Aug. 2024, pp. 129-37, doi:10.54939/1859-1043.j.mst.97.2024.129-137.

Issue

Section

Physics & Materials Science

Categories