Assessment of Cu and Zn pollution in surface sediments of Song Cau – Thai Nguyen city

125 views

Authors

DOI:

https://doi.org/10.54939/1859-1043.j.mst.88.2023.73-80

Keywords:

Heavy metal; Surface sediments; Geoaccumulation index; Enrichment factors; Risk assessment code.

Abstract

The level of heavy metals pollution on the aquatic environment depends not only on the total metal concentration but also on the fractions of heavy metals in the sediments. In this study, the level of contamination of Cu and Zn in surface sediments of Cau river - Thai Nguyen city has been analyzed and assessed by the total metal concentration and the fractions of these metals. Surface sediment samples were collected at 08 locations, the results showed that, according to QCVN 2012, the Cu concentration didn’t exceed the pollution limit and the Zn concentration of 03 sampling locations (S1, S6, and S7) exceeded the pollution limit. The geological accumulation index of Cu is Igeo -Cu < 0 and that of Zn is about 1 < Igeo-Zn < 2 or copper is not polluted and zinc is moderately polluted. The enrichment factors of Cu are in the range of 5 < EF < 20 while Zn has an EF > 20 or the enrichment capacity of Zn is high and Cu is insignificant. The %RAC value of Cu is in the range of 10 < %RAC < 30 and for Zn %RAC < 10 that means the risk assessment code of Zn is low and that of Cu is moderate. Both of the individual contamination factors of Cu and Zn are low (ICF < 1).

References

[1]. A. J. Green, A. Planchart, “The neurological toxicity of heavy metals: a fish perspective”, Comp. Biochem. Physiol. C: Toxicol. Pharmacol, vol 208, pp 12 – 19, (2018). DOI: https://doi.org/10.1016/j.cbpc.2017.11.008

[2]. J. E. Gall, R. S. Boyd, N. Rajakaruna, “Transfer of heavy metals through terrestrial food webs: a review”, Environ. Monit. Assess., vol 187, no 4, pp 201, (2015). DOI: https://doi.org/10.1007/s10661-015-4436-3

[3]. WHO, “Environmental Health Criteria 200: Copper”, World Health Organization, Geneva, (1998).

[4]. Ivor E Dreosti, “Zinc: Nutritional aspects, report of international meeting”, Adelaide, (1996).

[5]. Phạm Thị Thu Hà, Vũ Đức Lợi, “Phân tích dạng kim loại đồng, kẽm trong trầm tích cột thuộc lưu vực sông Cầu – tỉnh Thái Nguyên”, Tạp chí phân tích Hóa, Lý và Sinh học, số 20, tr 152-160, (2015).

[6]. QCVN 43: 2012/BTNMT, Quy chuẩn kỹ thuật quốc gia về chất lượng trầm tích.

[7]. L.C. F. Sergio, B. S. J. Jucelino, F. S. Ivanice, M.C. O. Olivia, C. Victor, F. S. Q. Antonio, “Use of pollution indices and ecological risk in the assessment of contamination from chemical elements in soils and sediments – Practical aspects”, Trends in Environmental Analytical Chemistry, vol 35, pp 00169, (2022). DOI: https://doi.org/10.1016/j.teac.2022.e00169

[8]. Shou Zhao, Chenghong Feng, Yiru Yang, Junfeng Niu, Zhenyao Shen, “Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods”, Journal of Hazardous Materials, Vol 241– 242, pp 164 – 172, (2012). DOI: https://doi.org/10.1016/j.jhazmat.2012.09.023

[9]. Method 3051A, “microwave assisted acid digestion of sediments, sludges, soils, and oils”, (2007).

[10]. United States Environmental Protection Agency, “EPA Method 6020B. Inductively Coupled Plasma— Mass Spectrometry”, (2014).

[11]. G. Rauret, S. J. F. Lopez, A. Sahuquillo, et al, “Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials” Journal of Environmental Monitoring, vol. 1, no. 1, pp. 57–61, (1999). DOI: https://doi.org/10.1039/a807854h

[12]. Vũ Đức Lợi, Nguyễn Thanh Nga, Trịnh Anh Đức, Phạm Gia Môn, Trịnh Hồng Quân, Dương Tuấn Hưng, Trần Thị Lệ Chi và Dương Thị Tú Anh, “Phân tích dạng một số kim loại nặng trong trầm tích thuộc lưu vực sông Nhuệ và Đáy”, Tạp chí phân tích Hóa, Lý và Sinh học, tập 15 (2010), tr 26 - 32.

[13]. G. Muller, “Index of Geoaccumulation in Sediments of the Rhine River”, Geojournal, vol 2, pp 108–118, (1969).

[14]. C. Reimann, P. De Caritat, “Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry”, Environ. Sci. Technol., vol 34, no 24, pp 5084–5091, (2000). DOI: https://doi.org/10.1021/es001339o

[15]. E. I. Hamilton, “Environmental variables in a holistic evaluation of land contaminated by historic mine wastes: a study of multi-element mine wastes in West Devon, England using arsenic as an element of potential concern to human health”, The Science of the Total Environment, vol 249, pp 171-221, (2000). DOI: https://doi.org/10.1016/S0048-9697(99)00519-7

[16]. H.D. Weissmannova, J. Pavlovsky, “Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview)”, Environ. Monit. Assess., Vol 189, no 12, pp 616, (2017). DOI: https://doi.org/10.1007/s10661-017-6340-5

[17]. S. K. Sundaray, B. B. Nayak, S. Lin, D. Bhatta, “Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments – A case study: Mahanadi basin, India”, J. Hazard, Mater, vol 186, pp 1837–1846, (2011). DOI: https://doi.org/10.1016/j.jhazmat.2010.12.081

[18]. Hoàng Thị Thanh Thủy, Từ Thị Cẩm Loan, Nguyễn Như Hà Vy, “Nghiên cứu địa hóa môi trường một số kim loại nặng trong trầm tích sông rạch Thành Phố Hồ Chí Minh”, Tạp chí phát triển KH và CN, tập 10, số 1, (2007). DOI: https://doi.org/10.3125/jstd.v10i1.351

[19]. Vũ Đức Lợi, Nguyễn Thị Vân, Trịnh Hồng Quân, Đinh Văn Thuận, Phạm Thị Thu Hà, “Phân tích dạng một số kim loại nặng trong trầm tích hồ Trị An”, Tạp chí phân tích Hóa, Lý và Sinh học, tập 20, số 3, tr 161-172, (2015).

Published

25-06-2023

How to Cite

[1]
H. Phạm, “Assessment of Cu and Zn pollution in surface sediments of Song Cau – Thai Nguyen city”, JMST, vol. 88, no. 88, pp. 73–80, Jun. 2023.

Issue

Section

Research Articles