COMPARISON OF DISPERSION CHARACTERISTICS OF SOLID-CORE PCFs INFILTRATED WITH PROPANOL AND ETHANOL
289 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.75A.2021.46-51Keywords:
Photonic crystal fibers; Dispersion; Nonlinear optics; SC generation.Abstract
In this paper, we propose the solid-core photonic crystal fibers (PCFs) with hexagonal cladding infiltrated with propanol in the air-holes. The dispersion characteristics and zero- dispersion wavelengths of these PCFs have been compared with previous publications and analyzed in detail. By investigating the dependence of the dispersion characteristics on the air-hole diameters, we determine the optimal structures with 1 µm of that. The PCF infiltrated with propanol exhibits flatter and smaller dispersion characteristic and the zero-dispersion wavelength shifted towards a longer wavelength, 24 nm compared with ethanol permeable PCFs [17]. This result shows that structure with a diameter of air-holes by 1µm is suitable for supercontinuum (SC) generation in the near- infrared wavelength range.
References
[1]. J.C. Knight, T.A. Birks, P.St.J. Russell, D.M. Atkin, Opt. Lett. 21(19), 1547 (1996).
[2]. T.A. Birks, J.C. Knight, P.St.J. Russell, Opt. Lett. 22(13), 961 (1997).
[3]. J.C. Knight, Nature 424, 847 (2003).
[4]. J.M. Fini, Meas. Sci. Technol. 15(6), 1120 (2004).
[5]. R. Buczynski, J. Pniewski, D. Pysz, R. Stepien, R. Kasztelanic, I. Kujawa, A.Filipkowski, A.J. Waddie, M.R. Taghizadeh, Opto-Electron. Rev. 20(3), 207 (2012).
[6]. A.H. Bouk, A. Cucinotta, F. Poli, S. Selleri, Opt. Expr. 12(5), 941 (2004).
[7]. M.M. Haque, M.S. Rahman, M. Samiul Habib, M. Selim Habib, S.M.A. Razzak, J. Microw. Optoelectron. Electromagn. Appl. 12(2), 44 (2013).
[8]. Md.B. Hossain, Ab.Al. Bulbul, Md.Ab. Mukit, Et. Podder, Opt. Photon. J. 7(11), 235 (2017).
[9]. R. Buczyński, Acta Physica Polonica A 106(2), 141 (2004).
[10]. T. Baghdasaryan, T. Geernaert, F. Berghmans, H. Thienpont, Opt. Expr. 19(8), 7705 (2011).
[11]. Y.E. Monfared, A.R.M. Javan, A.R.M. Kashani, Optik 124(24), 7049 (2013).
[12]. M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M.R. Taghizadeh, R. Buczynski, Opt. Lett. 38(22), 4679 (2013).
[13]. J. Pniewski, T. Stefaniuk, L.V. Hieu, C.L. Van, C.V. Lanh, R. Kasztelanic, G. Stępniewski, A. Ramaniuk, M. Trippenbach, R. Buczyński, App. Opt. 55(19), 5033 (2016).
[14]. C.V. Lanh, T. Stefaniuk, R. Kasztelani, C.L. Van, M. Klimczakd, L.V. Hieu, M. Trippenbach, R. Buczynski, Proc. of SPIE 9816, 98160O-1 (2015).
[15]. D.X. Khoa, C.V. Lanh, H.D. Quang, M.V. Luu, M. Trippenbach, R. Buczyński, Opt. Quant. Electron. 49(2), 87 (2017).
[16]. C.V. Lanh, H.V. Thuy, C.L. Van, K. Borzycki, D.X. Khoa, T.Q. Vu, M. Trippenbach, R. Buczyński, J. Pniewski, Laser Phys. 29(7), 075107 (2019).
[17]. L.V. Hieu, C.L. Van, N.T. Hue, N.M. An, R. Buczyński, R. Kasztelanic, Laser Phys. 28(11), 115106 (2018).
[18]. K. Moutzouris, M. Papamichael, S.C. Betsis, I. Stavrakas, G. Hloupis, D. Triantis, Appl. Phys. B. 116(3), 617 (2014).
[19]. I.H. Malitson, J. Opt. Soc. Am. 55(10), 1205 (1965).
[20]. http://www.inchem.org/documents/ehc/ehc/ehc102.htm.
[21]. Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/mode/.