Improving the accuracy of head rotation angle estimation using inertial micro-electro-mechanical sensors and adaptive digital filters

36 views

Authors

  • Ha Ngoc Khoan Academy of Military Science and Technology
  • Tran Van Nghia (Corresponding Author) Air Force – Air Defense Technical Institute
  • Le Ky Bien Academy of Military Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.104.2025.59-70

Keywords:

Vestibulo-ocular reflex (VOR); Inertial measurement unit (IMU); Adaptive digital filtering; Mahony filter; Head angular velocity; Micro-electromechanical sensors (MEMS).

Abstract

The paper proposes a method to enhance the accuracy of head rotation angle estimation by integrating micro-inertial measurement sensors and digital filtering. The method is implemented under a stable gaze condition. Experimental results show that, compared to Mahony and Kalman filters, the proposed approach significantly improves the accuracy of head rotation angle estimation, with an RMS error of less than 0.1 degrees in horizontal plane rotation while maintaining real-time performance. These results are well-suited for applications in vestibulo-ocular reflex (VOR) signal recording for vestibular disorder diagnosis.

References

[1]. V. Bijalwan, V. B. Semwal, T. K. Mandal. “Fusion of Multi-Sensor Based Biomechanical Gait Anal-ysis Using Vision and Wearable Sensor”. IEEE Sensors Journal, vol. 21, no. 13, pp. 14213 - 14220, (2021). DOI: https://doi.org/10.1109/JSEN.2021.3066473

[2]. S. O. Madgwick. “An efficient orientation filter for inertial and inertial/magnetic sensor arrays”. Report x-io and University of Bristol (UK), pp. 113-118, (2010).

[3]. S. Song, Y. Pei, & E. Hsiao-Wecksler. “Estimating Relative Angles Using Two Inertial Measurement Units Without Magnetometers”. IEEE Sensors Journal, 22, 19688-19699, (2022). DOI: https://doi.org/10.1109/JSEN.2022.3203346

[4]. S. A. Ludwig, & K. D. Burnham. “Comparison of Euler Estimate using Extended Kalman Filter, Madgwick and Mahony on Quadcopter Flight Data”. International Conference on Unmanned Air-craft Systems (ICUAS), pp. 1236-1240, (2018). DOI: https://doi.org/10.1109/ICUAS.2018.8453465

[5]. A. Jouybari, H. Amiri, A. Ardalan, & N. Zahraee. “Methods comparison for attitude determination of a lightweight buoy by raw data of IMU”. Measurement, 136, 490-500, (2019). DOI: https://doi.org/10.1016/j.measurement.2018.11.061

[6]. R.S. Jampel and D.C. Shi, “Primary position of the eye, reset speed, and horizontal visual head plane. Head movements around the cervical joint”, Investigative Ophthalmology & Visual Sciences 33, 2501–2510, (1992).

[7]. Mahony, R., Hamel, T., & Pflimlin, J. M. “Nonlinear complementary filters on the special orthogo-nal group”. IEEE Transactions on Automatic Control, 53(5), 1203–1218, (2008). DOI: https://doi.org/10.1109/TAC.2008.923738

[8]. R. Kumar, M. Bhargavapuri, A. M. Deshpande, S. Sridhar, K. Cohen, and M. Kumar, "Quaternion feedback based autonomous control of a quadcopter UAV with thrust vectoring rotors," 2020 Amer-ican Control Conference (ACC), Denver, CO, USA, pp. 1-6, (2020). DOI: 10.23919/ACC45564.2020.9147794. https://ieeexplore.ieee.org/document/9147794 DOI: https://doi.org/10.23919/ACC45564.2020.9147794

[9]. Q. Li, R. Li, K. Ji and W. Dai, "Kalman Filter and Its Application," 2015 8th International Confer-ence on Intelligent Networks and Intelligent Systems (ICINIS), Tianjin, China, pp. 74-77, (2015), doi: 10.1109/ICINIS.2015.35. DOI: https://doi.org/10.1109/ICINIS.2015.35

[10]. T. Seel, J. Raisch and T. Schauer, "IMU-based joint angle measurement for gait analysis", Sensors, vol. 14, no. 4, pp. 6891-6909, (2014). DOI: https://doi.org/10.3390/s140406891

[11]. A. Brennan, J. Zhang, K. Deluzio and Q. Li, "Quantification of inertial sensor-based 3D joint angle measurement accuracy using an instrumented gimbal", Gait Posture, vol. 34, no. 3, pp. 320-323, (2011). DOI: https://doi.org/10.1016/j.gaitpost.2011.05.018

[12]. S. Y. Song, Y. Pei, S. R. Tippett, D. Lamichhane, C. M. Zallek and E. T. Hsiao-Wecksler, "Validation of a wearable position velocity and resistance meter for assessing spasticity and rigidity", Proc. Frontiers Biomed. Devices, pp. 1-4, (2018). DOI: https://doi.org/10.1115/DMD2018-6906

[13]. P. Picerno, "25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches", Gait Posture, vol. 51, pp. 239-246, (2017). DOI: https://doi.org/10.1016/j.gaitpost.2016.11.008

[14]. S. Y. Song, Y. Pei, J. Liang and E. T. Hsiao-Wecksler, "Design of a portable position velocity and resistance meter (PVRM) for convenient clinical evaluation of spasticity or rigidity", Proc. Design Med. Devices Conf., pp. 1-2, (2017). DOI: https://doi.org/10.1115/DMD2017-3503

[15]. G. Ligorio and A. M. Sabatini, "A novel Kalman filter for human motion tracking with an inertial-based dynamic inclinometer", IEEE Trans. Biomed. Eng., vol. 62, no. 8, pp. 2033-2043, (2015). DOI: https://doi.org/10.1109/TBME.2015.2411431

Downloads

Published

25-06-2025

How to Cite

[1]
K. Hà, N. Trần Văn, and Le Ky Bien, “Improving the accuracy of head rotation angle estimation using inertial micro-electro-mechanical sensors and adaptive digital filters”, JMST, vol. 104, no. 104, pp. 59–70, Jun. 2025.

Issue

Section

Electronics & Automation