Fabrication of expanded vermiculite using the mixed methods of microwave and H2O2 agents for arsenic adsorption in water
12 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.100.2024.77-82Keywords:
Expanded Vermiculite; Adsorption; H2O2.Abstract
Among the technologies that have been studied to remove anions caused by Arsenic pollution, adsorption has received considerable attention. Vermiculite (VER) is a clay mineral that is abundant, low cost, environmentally friendly and is considered a potential adsorbent material for removing Arsenic from aqueous environments. In this work, expanded VER was studied for the adsorption of Arsenic(V) in water. The effects of concentration and time on adsorption efficiency were investigated in detail and fully. The maximum adsorption capacity of expanded VER for As(V) was 17.123 mg.g-1, and the saturation adsorption time was about 120 minutes. The kinetic model results showed that the adsorption processes followed second-order kinetics.
References
[1]. Bakshi, S.; Banik, C.; Rathke, S.J.; Laird, D.A, “Arsenic sorption on zero-valent iron-biochar com-plexes”, Water Res, Vol.137, 153-163 (2018). DOI: https://doi.org/10.1016/j.watres.2018.03.021
[2]. Sarkar, A.; Paul, B, “The global menace of arsenic and its conventional remediation-A critical re-view”, Chemosphere, Vol.158, 37-49 (2016). DOI: https://doi.org/10.1016/j.chemosphere.2016.05.043
[3]. Ali, I, “The Quest for Active Carbon Adsorbent Substitutes: Inexpensive Adsorbents for Toxic Metal Ions Removal from Wastewater”, Sep. Purif. Rev, Vol. 39, 95–171, (2010). DOI: https://doi.org/10.1080/15422119.2010.527802
[4]. Yu, Y.; Zhao, C.W.; Wang, Y.G.; Fan, W.H.; Luan, Z.K, “Effects of ion concentration and natural organic matter on arsenic(V) removal by nanofiltration under different transmembrane pressures”, J. Environ. Sci, Vol.25, 302–307, (2013). DOI: https://doi.org/10.1016/S1001-0742(12)60044-8
[5]. Wang, Y.X.; Duan, J.M.; Liu, S.X.; Li, W.; van Leeuwen, J.; Mulcahy, D, “Removal of As(III) and As(V) by ferric salts coagulation-Implications of particle size and zeta potential of precipitates”, Sep. Purif. Technol, Vol.135, 64-71, (2014). DOI: https://doi.org/10.1016/j.seppur.2014.08.004
[6]. Wang, S.S.; Gao, B.; Zimmerman, A.R.; Li, Y.C.; Ma, L.; Harris, W.G.; Migliaccio, K.W, “Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite”, Bioresour. Technol, Vol. 175, 391–395, (2015). DOI: https://doi.org/10.1016/j.biortech.2014.10.104
[7]. Martynkova, G.S.; Valaskova, M.; Capkova, P.; Matejka, V, “Structural ordering of organovermicu-lite: Experiments and modeling”, J. Colloid Interface Sci, Vol. 313, 281-287, (2007). DOI: https://doi.org/10.1016/j.jcis.2007.04.007
[8]. Su, X.L.; Ma, L.Y.; Wei, J.M.; Zhu, R.L, “Structure and thermal stability of organo-vermiculite”, Appl. Clay Sci, Vol.132, 261-266, (2016). DOI: https://doi.org/10.1016/j.clay.2016.06.011
[9]. N.V Huy, K.H Bình, T.V Chinh, N.T.H Phương, V.T Thiện, Đ.T Trang, N.T.H Phượng, V.T Hằng, T.V Hoài, L.Đ Dương, “Nghiên cứu chế tạo vật liệu vermiculite giãn nở sử dụng vi sóng và tác nhân H2O2 ứng dụng làm vật liệu hấp phụ”, Tạp chí xúc tác và hấp phụ Việt Nam, Vol.13, 95-99, (2024).
[10]. Barczewski M et al, “Comprehensive Analysis of the Influence of Expanded Vermiculite on the Foaming Process and Selected Properties of Composite Rigid Polyurethane Foams”, Polym (Basel), Vol. 14, 22, (2022). DOI: https://doi.org/10.3390/polym14224967
[11]. Vašina M et al, “Sound absorption study of raw and expanded particulate vermiculites”, Appl Phys A, Vol. 122, 12, (2016). DOI: https://doi.org/10.1007/s00339-016-0527-4