Synthesis of a sliding mode controller following the trajectory for automated guided vehicles AGV
101 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.CAPITI.2024.112-118Keywords:
Automated guided vehicle; Kinematic model; Dynamic model; Sliding mode control; Lyapunov stability.Abstract
Automated guided vehicles AGV are widely used in many fields such as factories, warehouses, post offices, etc. One of the key tasks of controlling AGV vehicles is to design a controller so that the vehicle follows the given trajectory well out under the effects of the system and surrounding environment. In this study, a method of synthesizing a sliding controller with an exponential approach law is proposed for 2-wheel differential active AGV vehicles. This method will move the trajectory of the AGV vehicle's parameters towards the sliding surface faster and reduce the chattering phenomenon compared to the method using the basic approach law, thereby helping the vehicle track the trajectory better during the operating process. Simulation results demonstrate the correctness of the proposed method.
References
[1]. R. Fierro, F.L. Lewis, “Control of a nonholonomic mobile robot: backstepping kinematics into dynamics”, Journal of Robotic Systems, Vol. 14, No. 3, pp.149–163, (1997). DOI: https://doi.org/10.1002/(SICI)1097-4563(199703)14:3<149::AID-ROB1>3.3.CO;2-N
[2]. R. Fierro, F. L. Lewis, “Control of a Nonholonomic Mobile Robot Using Neural Networks”, IEEE Transactions on neural networks, Vol. 9, No. 4, pp. 589-600, (1998). DOI: https://doi.org/10.1109/72.701173
[3]. Ghania Zidani et al, “Robust Nonlinear Control of a Mobile Robot”, J Electr Eng Technol, Vol. 11, No. 4, pp. 1012-1019, (2016). DOI: https://doi.org/10.5370/JEET.2016.11.4.1012
[4]. Phạm Thị Hương Sen và các tác giả, “Thiết kế thuật toán điều khiển cho xe tự hành dựa trên kĩ thuật Backstepping và điều khiển trượt”, Tuyển tập Hội nghị khoa học toàn quốc lần thứ nhất về Động lực học và Điều khiển, tr. 117-120, (2019).
[5]. Gregor Klancar, Drago Matko, Saso Blazic, “Mobile Robot Control on a Reference Path”, Proceedings of the 13th Mediterranean Conference on Control and Automation, pp. 1343-1348, (2005).
[6]. Lê Bá Yến, Chu Văn Hoạt, Lê Văn Tuấn, Vũ Xuân Vượng, “Phương pháp điều hướng xe tự hành AGV dùng cảm biến quán tính và đường dẫn ảo, phục vụ vận chuyển hàng trong các môi trường đặc thù”, Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san Hội thảo quốc gia FEE, tr. 57-65, (2020).
[7]. Bouzgou kamel, Ibari benaoumeur, Benchikh laredj, Ahmed-foitih Zoubir, “Integral Backstepping Approach for Mobile Robot Control”, TELKOMNIKA, Vol.15, No.3, pp. 1173–1180, (2017). DOI: https://doi.org/10.12928/telkomnika.v15i3.5667
[8]. Yandong Li, Zongyi Wang and Ling Zhu, “Adaptive Neural Network PID Sliding Mode Dynamic Control of Nonholonomic Mobile Robot”, Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China, pp. 753-757.
[9]. Felipe N. Martin et al, “An adaptive dynamic controller for autonomous mobile robot trajectory tracking”, Control Engineering Practice, Vol. 16, No. 11, pp. 1354–1363, (2008). DOI: https://doi.org/10.1016/j.conengprac.2008.03.004
[10]. T. Das, I. N. Kar, “Design and Implementation of an Adaptive Fuzzy Logic-Based Controller for Wheeled Mobile Robots”, IEEE Trans. on CST, Vol. 14, No. 3, pp. 501-510, (2006). DOI: https://doi.org/10.1109/TCST.2006.872536
[11]. Nguyễn Doãn Phước, “Điều khiển trượt cơ bản và trượt bậc cao”, Tạp chí Khoa học và Công nghệ. Đại học Thái nguyên, Tập 118, Số 4, tr. 3-13, (2014).