Advances in manufacturing multi-layer materials for thermal camouflage applications

69 views

Authors

  • Nguyen Ngoc Son Academy of Military Science and Technology
  • Nguyen Manh Thang Academy of Military Science and Technology
  • Vu Duc Hieu Military Technical Academy
  • Nguyen Anh Tuan (Corresponding Author) Academy of Military Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.97.2024.3-15

Keywords:

Thermal camouflage; Multi-layered textile structures; Emissivity; Target; Background; Metamaterials.

Abstract

 Thermal imaging reconnaissance technology has been widely and effectively exploited in the military sector to serve reconnaissance, search and track objects and other purposes, because the heat signature of any target is very difficult to conceal, and easily be detected by thermal imaging reconnaissance devices. Thermal imaging camouflage covers are researched and developed to limit detection by thermal imaging devices by minimizing the heat signature of the target. Multi-layered Textile Structures (MTS) coverings are proposed basing on overlapping layers of different materials, combining and optimizing the properties of individual materials to create one with thermal camouflage properties. This article studied and summarized national and international research on thermal imaging camouflage coverings with multi-layer structures, as a basis for orienting research, developing a design method, optimizing and manufacturing a covering with a multi-layer structure that effectively thermal camouflages by domestic resources.

References

[1]. N. T. Cầm, “Nguỵ trang nghi trang trong phòng chống trinh sát quang điện tử,” Giáo trình đào tạo NCS, NXB Quân đội Nhân dân (2023).

[2]. JV. R. Rao, “Introduction to Camouflage and Deception,” Defence Research & Development Organisation, Ministry of Defence, New Delhi-110 011, 21-24 (1999).

[3]. A. Roglski, “Infrared Detectors, An Overview, ” Inf. Phys. Technol. 43, tr. 187-210, (2002).

[4]. D. Peric et al, “Thermal Imager Range: Predictions, Expectations and Reality,” Sensor, 19(15), 3313, (2019).

[5]. J. Berela, M. Kastek, “Measurement and Analysis of the Parameters of Modern Long-Range Thermal Imaging Cameras,” Sensor 17, 5700, (2021).

[6]. F.B. Olsen, “Methods for evaluating thermal camouflage,” A FFI Report No. RTO-MPSCI-145, (2005).

[7]. C. Plesa et al, “The use of infrared radiation for thermal signatures determination of ground targets,” Rom. J. Phys. 51, pp.63–72, (2006).

[8]. J. G. Hixon et al, “Target detection cycle criteria when using the target task metric,” SPIE 5612 (2004), pp. 275–276.

[9]. G. C. Holst, “Common Sense Approach to Thermal Imaging,” JCD and SPIE Pub., pp. 265–290, (2000).

[10]. O. Dev et al, “Multi-layered textile structure for thermal signature suppression of ground based targets,” Inf. Phys. Technol. 105, 103175, (2020).

[11]. Hexels, “Thermal Camouflage Sheet,” US Patent 7244684 B2, (2007).

[12]. Hellwig et al, “Thermal Camouflage Tarpaulin,” US Patent 7148161 B2, (2006).

[13]. Cox et al, “Infrared Camouflage Covering,” US Patent 6127007, (2000).

[14]. G. D. Culler et al, “Infrared reflective coverings,” US Patent 5750242, (1998).

[15]. V. Rubeziene et al, “Reduction of thermal signature using fabrics with conductive additives,” Mater. Sci. (Medziagotyra) 19, pp.409–414, (2013).

[16]. C. Oahman, “Emittance Measurement using AGEMA E-Box,” Technical Report, AGEMA, (1999).

[17]. Z. S. Abdel- Rehim et al, “Textile fabrics as thermal insulators,” AUTEX Res. J.6, pp.148-161, (2006).

[18]. M. Matusiak, “Investigation of the thermal insulation properties of multilayer textiles,” J. Fibres Text. East. Eur. 14, pp.98–102, (2006).

[19]. N. N. Sơn et al, “A high-accuracy measurement method of surface emissivity using a spectroradiometer SR-5000N,” Proc. of 8th CASEAN, 28-30 August, Vinh, pp.674-681, (2023).

[20]. P. Ding et al, “Multilayer graphene-based radiation modulator for adaptive infrared camouflage with thermal management,” J. Phys. D Appl. Phys., 55, 345103, (2022).

[21]. Q. Kang et al, “Tunable thermal camouflage based on GST plasmonic metamaterial”, Nanomaterials 2021, 11, 260.

[22]. Y.J. Huang et al, “Broadband metamaterial as an “Invisible” radiative cooling coat,” Opt. Commun., 407, 204-207, (2018).

[23]. A. Ali et al, “A review from the perspectives of materials, mechanisms and advanced metadevices,” Nanomaterials, 12, 1027, (2022).

[24]. D. Qi et al, “Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications,” Opt. Mater., 62, 52–56, (2016).

[25]. Z. Deng et al, “ Nanostructured Ge/ZnS films for multispectral camouflage with low visibility and low thermal emission,” ACS Appl. Nano Mater., 5, 5119–5127, (2022).

[26]. Z. Zhao et al, “Selectively thermal radiation control in long-wavelength infrared with broadband all-dielectric absorber,” Opt. Express, 27, 35088–35095, (2019).

[27]. L. Wang et al, “Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design,” Opt. Lett., 46, 5224–5227, (2021).

[28]. M. Yang et al, “Infrared and Terahertz compatible absorber based on multilayer film,” Front. Phys., 9, 633971, (2021).

[29]. L. Zhang et al, “Three-Layered Thin Films for Simultaneous Infrared Camouflage and Radiative Cooling,” MDPI, Materials, 16, 4188, (2023).

[30]. V. H. Khánh, “Nghiên cứu phương pháp và phương tiện để xây dựng cơ sở dữ liệu phục vụ công tác ngụy trang phòng chống các phương tiện trinh sát ảnh,” Báo cáo tổng kết đề tài cấp Viện KH-CN quân sự (2022).

[31]. N. N. Sơn et al, “Một phương pháp thiết kế họa tiết ngụy trang hòa trộn với phông nền”, Tạp chí Nghiên cứu KH&CN quân sự, 92, tr. 121-129, (2023).

[32]. M. C. Hall, “Thermal Signature Management,” Master thesis (2017), North Carolina State University.

[33]. G. Song, “Modeling thermal protection outfits for fire exposures,” PhD thesis, N. Carolina State University, (2002).

[34].Y. A. Cengel et al, “Heat and mass transfer- fundamentals and applications,” NXB McGraw Hill Education, tr. 144-153, (2015).

[35]. N. T. Lâm, “Nghiên cứu công nghệ ngụy trang thích nghi và đề xuất giải pháp công nghệ ứng dụng cho một số đối tượng quân sự,” Báo cáo tổng kết đề tài cấp Viện Vật lý Kỹ thuật (2023).

[36]. https://www.baesystems.com/en/feature/adativ-cloak-of-invisibility. Truy cập ngày 11/4/2024.

[37]. K. Andersson, “On the military utility of spectral design in signature management: a system approach,” Luận văn Tiến sĩ, Finníh National Defence University, Thụy Điển, (2018).

[38]. K. E. Andersson and C. Akerlind, “A review of materials for spectral design coatings in signature management applications,” Proc. of SPIE Vol. 9253, 9253Y (2014).

[39]. T. Hallberg et al, “Development of low emissive camouflage paint : Final report Development of low-emissive camouflage paint : Final report ,” FOI, (2005).

[40]. H. Karlsson et al, “Ny typ av lågemissiv kamouflagefärg - slutrapport,” FOI-R--2316--SE (2007).

[41]. F. C. Shen et al “Study on the Low-Emissive Camouflage Pigment,” Adv Mater Res., 624, 303–306 (2012).

[42]. https://intermatdefense.com/anti-thermal. Truy cập ngày 11/4/2024.

[43]. R. Hu et al, “Thermal camouflaging metamaterials,” Materialstoday, Vol 45, pp. 120-141, (2021).

[44]. T. Han et al, “Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials,” Advanced Materials, Volume 26, Issue 11, pp.1731-1734, (2014).

[45]. T. Yang et al, “Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields,” Advanced Materials, Volume 27, Issue 47, pp.7752-7758, (2015).

[46]. Y. Li et al, “Structured thermal surface for radiative camouflage,” Nat Commun 9, 273 (2018).

[47]. R. Hu et al, “Illusion thermotics,” Advanced Materials, Vol. 30, No. 22, 1707237, (2018).

[48]. W. Sha et al, “Illusion thermotics with topology optimization,” J. Appl. Phys. Vol. 128. Issue 4 (2020).

[49]. J. Zhang et al, “Adaptive Radiative Thermal Camouflage via Synchronous Heat Conduction,” Chinese Physics Letters, 38 010502 (2021).

[50]. C. Zhang et al, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50 444002 (2017).

[51]. L. Peng et al, “A Multilayer Film Based Selective Thermal Emitter for Infrared Stealth Technology,” Advanced Optical Materials, 6, 1801006, (2018).

[52]. H. Zhu et al, “High-temperature infrared camouflage with efficient thermal management,” Light, Science & Applications, 9:60, (2020).

[53]. T. Kim et al, “Hierarchical Metamaterials for Multispectral Camouflageof Infrared and Microwaves,” Adv. Funct. Mater., 29, 1807319, (2019).

[54]. M. Pan et al, “Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures,” Nano Energy, Vol 69, 14449, (2020).

[55]. Z. J. Coppens and J. G. Valentine, “Spatial and Temporal Modulation of Thermal Emission,” Advanced Materials, Vol 29, Issue 39, 1701275, (2017).

[56]. O. Salihoglu et al, “Graphene-Based Adaptive Thermal Camouflage,” Nano Lett. 2018, 18, 7, 4541–4548.

[57]. X. Duan et al, “Reconfigurable Multistate Optical Systems Enabled by VO2 Phase Transitions,” ACS Photonics, 7, 11, 2958–2965, (2020).

[58]. Y. Qu et al, “Thermal camouflage based on the phase-changing material GST,” Light Sci Appl 7, 26 (2018).

[59]. C. Xu et al, “Adaptive infrared-reflecting systems inspired by cephalopods,” Sci 359(6384): 1495-1500, (2018).

[60]. M. Li et al, “Manipulating metals for adaptive thermal camouflage,” Sci. Adv. 6, eaba3494 (2020).

Published

25-08-2024

How to Cite

Nguyen, N. S., Nguyễn Mạnh Thắng, Vũ Đức Hiếu, and D. Nguyen Anh. “Advances in Manufacturing Multi-Layer Materials for Thermal Camouflage Applications”. Journal of Military Science and Technology, vol. 97, no. 97, Aug. 2024, pp. 3-15, doi:10.54939/1859-1043.j.mst.97.2024.3-15.

Issue

Section

Review

Categories