Enhancing photocatalytic degradation of methylene blue by TiO2-CeO2 heterostructure under visible light irradiation

220 views

Authors

  • Vu Thi Nga Department of Chemistry, College of Education, Vinh University
  • Le The Tam School of Chemistry, Biology and Environment, Vinh University
  • Nguyen Hoa Du Department of Chemistry, College of Education, Vinh University
  • Nguyen Hoang Hao Department of Chemistry, College of Education, Vinh University
  • Le Thi Thu Hiep Centre for Practice and Experiment, Vinh University
  • Chu Thi Thanh Lam Centre for Practice and Experiment, Vinh University
  • Nguyen Thi Kim Chung Centre for Practice and Experiment, Vinh University
  • Nguyen Le Khanh Huyen Phan Boi Chau High School for Gifted, Vinh City, Nghe An
  • Ho Thi Van Suong School of Chemistry, Biology and Environment, Vinh University
  • Nguyen Thi Quynh Department of Chemistry, College of Education, Vinh University
  • Ho Dinh Quang (Corresponding Author) Department of Chemistry, College of Education, Vinh University

DOI:

https://doi.org/10.54939/1859-1043.j.mst.93.2024.99-105

Keywords:

TiO2 nanoparticles; TiO2-CeO2 heterostructure; Methylene blue and photocatalytic degradation.

Abstract

TiO2-CeO2 heterostructure was synthesized by a simple hydrothermal technique, with an average particle size of 21 nm, and high uniformity from the common precursors. For the characterization of the catalyst properties, the techniques of X-ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), and Transmission Electron Microscopes (TEM) were used. The TiO2-CeO2 heterostructure exhibited higher photocatalytic activity than TiO2 in the removal of methylene blue (MB) dye under visible light irradiation. The combination of TiO2-CeO2 facilitated electron pathways, creating favorable conditions for efficient separation of electron-hole pairs and enhancing the photocatalytic activity of the material. The TiO2-CeO2 heterostructure demonstrated rapid and highly efficient photodegradation of methylene blue, achieving an 89.79% removal rate after 120 minutes of irradiation. This performance, coupled with enhanced visible light utilization, suggests wide applications in the field of photocatalysis.

References

[1]. B. Lellis, C. Z. Fávaro-Polonio, J. A.r Pamphile, J. C. Polonio, “Effects of textile dyes on health and the environment and bioremediation potential of living organisms,” Biotechnology Research and Innovation,Vol. 3, No. 2, pp.275-290, (2019). DOI: https://doi.org/10.1016/j.biori.2019.09.001

[2]. C. Chen, Z. Wang, S. Ruan, B. Zou, M. Zhao, F. Wu, “Photocatalytic degradation of C.I. Acid Orange 52 in the presence of Zn-doped TiO2 prepared by a stearic acid gel method,” Dyes and Pigments, Vol. 77, No. 1, pp. 204-209, (2008). DOI: https://doi.org/10.1016/j.dyepig.2007.05.003

[3]. L. Maknun, Nazriati, I. Farida, N. Kholila, R.B. Muyas Syufa, “Synthesis of silica xerogel based bagasse ash as a methylene blue adsorbent on textile waste,” Journal of Physics: Conference Series, Vol. 1093, No. 1, pp. 1-5, (2018). DOI: https://doi.org/10.1088/1742-6596/1093/1/012050

[4]. M. S. Mahmoud, J. Y. Farah, T. E. Farrag, “Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes,” Egyptian Journal of Petroleum, Vol. 22, No. 1, pp. 211-216, (2013). DOI: https://doi.org/10.1016/j.ejpe.2012.09.013

[5]. S. R. Geed, K. Samal, A. Tagade, “Development of adsorption-biodegradation hybrid process for removal of methylene blue from wastewater,” Journal of Environmental Chemical Engineering, Vol. 7, No. 6, pp.1-20, (2019). DOI: https://doi.org/10.1016/j.jece.2019.103439

[6]. G. Fadillah, T. A. Saleh, S. Wahyuningsih, E. N. K. Putri, S. Febrianastuti, “Electrochemical removal of methylene blue using alginate-modified graphene adsorbents,” Chemical Engineering Journal, Vol. 378, No. 12, pp. 122140, (2019). DOI: https://doi.org/10.1016/j.cej.2019.122140

[7]. N. Madkhali, C.Prasad, K. Malkappa, H. Y. Choi, V. Govinda, I. Bahadur, R.A. Abumousa, “Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials,” Results in Engineering, Vol. 17, No.3, pp.100920, (2023). DOI: https://doi.org/10.1016/j.rineng.2023.100920

[8]. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, “Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review,” Journal of Cleaner Production, Vol. 268, No.9, pp. 121725, (2020). DOI: https://doi.org/10.1016/j.jclepro.2020.121725

[9]. D. Jiang et al., “A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants,” Catalysts, Vol. 11, No. 9, pp.1039, (2021). DOI: https://doi.org/10.3390/catal11091039

[10]. D T. M. Wandre, P. N. Gaikwad, A. S. Tapase, K. M. Garadkar, S. A. Vanalakar, P. D. Lokhande, R. Sasikala, P. P. Hankare, “Sol-gel synthesized TiO2-CeO2 nanocomposite: an efficient photocatalyst for degradation of methyl orange under sunlight,” Journal of Materials Science: Materials in Electronics, Vol. 27, pp. 825-833, (2026). DOI: https://doi.org/10.1007/s10854-015-3823-4

[11]. E. Kusmierek, “A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review,” Catalysts, Vol. 10, No.12, pp.1435, (2020). DOI: https://doi.org/10.3390/catal10121435

[12]. J. Wang, F. Meng, W. Xie, C. Gao, Y. Zha, D. Liu, P. Wang, “TiO2/CeO2 composite catalysts: synthesis, characterization and mechanism analysis,” Applied Physics A, Vol. 124, No. 645, pp.1-6, (2018). DOI: https://doi.org/10.1007/s00339-018-2027-1

[13]. N. Sofyan, A. Ridhova, A. H. Yuwono, A.Udhiarto, “Preparation of anatase TiO2 nanoparticles using low hydrothermal temperature for dye-sensitized solar cell,” IOP Conference Series: Materials Science and Engineering, Vol. 316, pp. 012055, (2018). DOI: https://doi.org/10.1088/1757-899X/316/1/012055

[14]. S. B. Khan, M. Faisal, M. M. Rahman, A. Jamal, “Exploration of CeO2 nanoparticles as a chemi-sensor and photocatalyst for environmental applications,” Science of The Total Environment, Vol. 409, No. 15, pp. 2987-2992, (2011). DOI: https://doi.org/10.1016/j.scitotenv.2011.04.019

[15]. Z. Fan, F. Meng, J. Gong, H. Li, Y. Hu, D. Liu, “Enhanced photocatalytic activity of hierarchical flower-like CeO2/TiO2 heterostructures,” Materials Letters, Vol. 175, pp. 36-39, (2016). DOI: https://doi.org/10.1016/j.matlet.2016.03.136

[16]. A. O. Bokuniaeva, A. S. Vorokh, “Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder,” Journal of Physics: Conference Series, Vol. 1410, pp. 012057, (2019). DOI: https://doi.org/10.1088/1742-6596/1410/1/012057

[17]. P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, “Structural, optical and morphological analyses of pristine titanium dioxide nanoparticles-synthesized via sol-gel route,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 117, No.1, p. 622-629, (2014). DOI: https://doi.org/10.1016/j.saa.2013.09.037

[18]. E. Wang et al., “Unique surface chemical species on indium doped TiO2 and their effect on the visible light photocatalytic activity,” The Journal of Physical Chemistry C, 113(49), 20912–20917. DOI: https://doi.org/10.1021/jp9041793

[19]. M. Malekkiani et al., “Fabrication of graphene-based TiO2@CeO2 and CeO2@TiO2 core–shell heterostructures for enhanced photocatalytic activity and cytotoxicity,” ACS Omega, Vol. 7, No. 34, pp.30601-30621, (2022). DOI: https://doi.org/10.1021/acsomega.2c04338

Downloads

Published

25-02-2024

How to Cite

[1]
T. N. Vu, “Enhancing photocatalytic degradation of methylene blue by TiO2-CeO2 heterostructure under visible light irradiation”, JMST, vol. 93, no. 93, pp. 99–105, Feb. 2024.

Issue

Section

Research Articles