Effect of thickness on InSb thin film properties grown onto silicon heated substrates by pulsed laser deposition
240 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.84.2022.109-118Keywords:
A3B5; InSb thin film; Pulsed Laser Deposition (PLD); Fourier-transform infrared spectroscopy (FTIR); Atomic Force Microscopy; Energy band gap.Abstract
InSb based-material is promising candidate to be widely used in civil and military missions, ranging from magnetism to optics. This report presents InSb thin films with various thicknesses from 150 nm to 2000 nm, developed by pulsed laser deposition approach at 300 °C and later characterised. Atomic structure analyses (XRD) reveal that the thin film are well crystallized at all of thicknesses. Increasing the thin film thickness leads to an increase in the crystallite size (18 nm - 33 nm) and the nanograins are made up from various crystallites, based on the AFM measurement. While the films have root mean square roughness of 3 nm for thin film thickness < 500 nm, this roughness increases to 15 nm for film thickness ≥ 500 nm. SEM analysis depicts that all thin films have a continuous, almost closely compacted grain structure. The reported results on structure, microstructure are correlated to explain the variation in optical properties of fabricated thin films through FTIR measurement.
References
[1]. K. E. Hnida, S. Bäßler, J. Mech, K. Szaciłowski, R. P. Socha, M. Gajewska, K. Nielsch, M. Przybylski, G. D. Sulka, "Electrochemically deposited nanocrystalline InSb thin films and their electrical properties", Journal of Materials Chemistry C. 4, pp. 1345 - 1350, (2016). https://doi.org/10.1039/C5TC03656A. DOI: https://doi.org/10.1039/C5TC03656A
[2]. K. Hnida, J. Mech, G.D. Sulka, "Template-assisted electrodeposition of indium–antimony nanowires – Comparison of electrochemical methods", Applied Surface Science. 287, pp. 252 - 256, (2013). https://doi.org/10.1016/j.apsusc.2013.09.135. DOI: https://doi.org/10.1016/j.apsusc.2013.09.135
[3]. J. Heremans, D.L. Partin, C.M. Thrush, L. Green, "Narrow-gap semiconductor magnetic-field sensors and applications", Semicond. Sci. Technol. 8, pp. S424 - S430, (1993). https://doi.org/10.1088/0268-1242/8/1S/093. DOI: https://doi.org/10.1088/0268-1242/8/1S/093
[4]. N.K. Udayashankar, H.L. Bhat, "Growth and characterization of indium antimonide and gallium antimonide crystals", Bull Mater Sci. 24, pp. 445 - 453, (2001). https://doi.org/10.1007/BF02706714. DOI: https://doi.org/10.1007/BF02706714
[5]. T. Zhang, S.K. Clowes, M. Debnath, A. Bennett, C. Roberts, J.J. Harris, R.A. Stradling, L.F. Cohen, T. Lyford, P.F. Fewster, "High-mobility thin InSb films grown by molecular beam epitaxy", Appl. Phys. Lett. 84, pp. 4463 - 4465, (2004). https://doi.org/10.1063/1.1748850. DOI: https://doi.org/10.1063/1.1748850
[6]. D.K. Gaskill, G.T. Stauf, N. Bottka, "High‐mobility InSb grown by organometallic vapor phase epitaxy", Appl. Phys. Lett. 58, pp. 1905 - 1907, (1991). https://doi.org/10.1063/1.105069. DOI: https://doi.org/10.1063/1.105069
[7]. Y. Liang, F. Wang, X. Luo, Q. Li, T. Lin, I.T. Ferguson, Q. Yang, L. Wan, Z.C. Feng, "Investigation of the Optical Properties of InSb Thin Films Grown on GaAs by Temperature-Dependent Spectroscopic Ellipsometry", J Appl Spectrosc. 86, pp. 276 - 282, (2019). https://doi.org/10.1007/s10812-019-00812-6. DOI: https://doi.org/10.1007/s10812-019-00812-6
[8]. M. K. Carpenter, M. W. Verbrugge, "Electrochemical codeposition of indium and antimony from a chloroindate molten salt", Journal of Materials Research. 9, pp. 2584 - 2591, (1994). https://doi.org/10.1557/JMR.1994.2584. DOI: https://doi.org/10.1557/JMR.1994.2584
[9]. V. V. Uglov, A. P. Drapezo, A. K. Kuleshov, D. P. Rusalski, E. A. Kolesnikova, "Effect of explosive thermal evaporation conditions on the phase composition, crystallite orientation, electrical and magnetic properties of heteroepitaxial InSb films on semi-insulating GaAs (100)", HTM. 25 (2021). https://doi.org/10.1615/HighTempMatProc.2021038260. DOI: https://doi.org/10.1615/HighTempMatProc.2021038260
[10]. N. Nishimoto, J. Fujihara, "Improvement of the structural properties and environmental stability of flexible InSb thin films by dopant-assisted crystallization", Appl. Phys. A. 128, p. 550, (2022). https://doi.org/10.1007/s00339-022-05694-8. DOI: https://doi.org/10.1007/s00339-022-05694-8
[11]. P. J. Kelly, R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications", Vacuum. 56, pp. 159 - 172, (2000). https://doi.org/10.1016/S0042-207X(99)00189-X. DOI: https://doi.org/10.1016/S0042-207X(99)00189-X
[12]. R. Venkataraghavan, K. M. Satyalakshmi, K. S. R. K. Rao, A. K. Sreedhar, M. S. Hegde, H. L. Bhat, "Pulsed laser deposition of indium antimonide", Bull. Mater. Sci. 19, pp. 123 - 129, (1996). https://doi.org/10.1007/BF02744794. DOI: https://doi.org/10.1007/BF02744794
[13]. K. Lee, K. Shigematsu, M. Azuma, "Heteroepitaxial growth of InSb thin film on SrTiO3 (001) by pulsed laser deposition for magnetic Hall sensor application", Jpn. J. Appl. Phys. 61, 080902, (2022). https://doi.org/10.35848/1347-4065/ac7bf3. DOI: https://doi.org/10.35848/1347-4065/ac7bf3
[14]. Tuan Nguyen Van, "Tunability of optical properties of InSb films developed by Pulsed Laser Deposition", (n.d.).
[15]. Nguyễn Văn Tuấn, Trần Quang Đạt, Nguyễn Vũ Tùng, Phùng Đình Phong, Phạm Văn Thìn, "Tính chất quang của màng InSb trên đế c-sapphire được chế tạo bằng phương pháp lắng đọng laser xung (PLD)", Journal of Science and Technique. 17, 12, (2022). DOI: https://doi.org/10.56651/lqdtu.jst.v17.n02.304
[16]. H. P. Klug, L. E. Alexander, "X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials", 2nd Edition, New York, (1974).
[17]. D. Nath, F. Singh, R. Das, "X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study", Materials Chemistry and Physics. 239, 122021, (2020). https://doi.org/10.1016/j.matchemphys.2019.122021. DOI: https://doi.org/10.1016/j.matchemphys.2019.122021
[18]. L. Ratke, P.W. Voorhees, "Growth and Coarsening: Ostwald Ripening in Material Processing", Springer-Verlag, Berlin Heidelberg, (2002). https://doi.org/10.1007/978-3-662-04884-9. DOI: https://doi.org/10.1007/978-3-662-04884-9
[19]. V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen, Kramers-Kronig relations in optical materials research, 1st ed., Springer-Verlag Berlin Heidelberg, (2005). https://doi.org/10.1007/b138913. DOI: https://doi.org/10.1007/b138913
[20]. R. A. Serway, J. W. Jewett, "Physics for Scientists and Engineers", 9 edition, Cengage Learning, Boston, MA, (2013).
[21]. D. E. Aspnes, "Optical properties of thin films", Thin Solid Films. 89, 249 - 262, (1982). https://doi.org/10.1016/0040-6090(82)90590-9. DOI: https://doi.org/10.1016/0040-6090(82)90590-9
[22]. D. E. Aspnes, "Local‐field effects and effective‐medium theory: A microscopic perspective", American Journal of Physics. 50, pp. 704 - 709, (1982). https://doi.org/10.1119/1.12734. DOI: https://doi.org/10.1119/1.12734
[23]. G. Kortüm, "Reflectance Spectroscopy: Principles, Methods, Applications", Springer-Verlag, Berlin Heidelberg, (1969). https://doi.org/10.1007/978-3-642-88071-1. DOI: https://doi.org/10.1007/978-3-642-88071-1
[24]. J. Tauc, ed., "Amorphous and Liquid Semiconductors", Springer, (1974). https://doi.org/10.1007/978-1-4615-8705-7. DOI: https://doi.org/10.1007/978-1-4615-8705-7
[25]. S. R. Vishwakarma, A. Kumar, R.S.N. Tripathi, Rahul, S. Das, "Fabrication and characterization of n-InSb thin film of different thicknesses", Indian Journal of Pure and Applied Physics. 51, pp. 260 - 266, (2013).
[26]. S. Fähler, M. Weisheit, S. Kahl, K. Sturm, H.U. Krebs, "The interface of laser-deposited Fe/Ag multilayers: evidence for the “subsurface growth mode” during pulsed-laser deposition and examination of the bcc–fcc transformation", Appl Phys A. 69, S459–S462, (1999). https://doi.org/10.1007/s003390051438. DOI: https://doi.org/10.1007/s003390051438
[27]. D. Li, H. Li, H. Sun, L. Zhao, "Characterization of ultrathin InSb nanocrystals film deposited on SiO2/Si substrate", Nanoscale Research Letters. 6, 601, (2011). https://doi.org/10.1186/1556-276X-6-601. DOI: https://doi.org/10.1186/1556-276X-6-601
[28]. I. H. Campbell, P. M. Fauchet, "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors", Solid State Communications. 58, pp. 739 - 741, (1986). https://doi.org/10.1016/0038-1098(86)90513-2. DOI: https://doi.org/10.1016/0038-1098(86)90513-2
[29]. R. Winkler, "Excitons and fundamental absorption in quantum wells", Phys. Rev. B. 51, pp. 14395 - 14409, (1995). https://doi.org/10.1103/PhysRevB.51.14395. DOI: https://doi.org/10.1103/PhysRevB.51.14395
[30]. K. G. Saw, N. M. Aznan, F. K. Yam, S. S. Ng, S. Y. Pung, "New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films", PLOS ONE. 10 (2015) e0141180. https://doi.org/10.1371/journal.pone.0141180. DOI: https://doi.org/10.1371/journal.pone.0141180