Synthesis of TiO2 nanomaterials applied for the degradation of nerve agent simulants DMNP
246 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.84.2022.42-49Keywords:
Nano TiO2; DMNP; Chemical warfare agent simulants; Photocatalytic.Abstract
TiO2 nanomaterials were successfully synthesized by sol gel method. TiO2 nanomaterials were characterized by X-ray difraction (XRD), Scanning electron microscopy (SEM), N2 adsorption–desorption and UV-Vis DRS. The SEM images of TiO2 samples showed the nanoparticle size of 20–30 nm and high specific surface area of 139 m2g-1. The TiO2 nanomaterials were used as the degradation of dimethyl 4-nitrophenyl phosphate (DMNP) chemical warfare agent emulator. The TiO2 nanomaterial exhibited highly catalytic performance of DMNP degradation and the conversion reached to the value of 96.14 %, after 120 min of reaction. The TiO2 photocatalyst performs three processes simultaneously, such as adsorption, hydrolysis and photocatalysis, so the DMNP treatment efficiency are greatly enhanced. The DMNP reduction efficiency of TiO2 catalyst reached over 90% after 4 reaction cycles.
References
[1]. C. Shen, Z. Mao, H. Xu, L. Zhang, Y. Zhong, B. Wang, X. Feng, C. an Tao, X. Sui, "Catalytic MOF-loaded cellulose sponge for rapid degradation of chemical warfare agents simulant", Carbohydrate Polymers. 213, 184–191, (2019). DOI: https://doi.org/10.1016/j.carbpol.2019.02.044
[2]. J. Zhao, D.T. Lee, R.W. Yaga, M.G. Hall, H.F. Barton, I.R. Woodward, C.J. Oldham, H.J. Walls, G.W. Peterson, G.N. Parsons, "Ultra-Fast Degradation of Chemical Warfare Agents Using MOF–Nanofiber Kebabs", Angewandte Chemie - International Edition. 55,13224–13228, (2016). DOI: https://doi.org/10.1002/anie.201606656
[3]. X.N. Pham, M.B. Nguyen, H.S. Ngo, H. V. Doan, "Highly efficient photocatalytic oxidative desulfurization of dibenzothiophene with sunlight irradiation using green catalyst of Ag@AgBr/Al-SBA-15 derived from natural halloysite", Journal of Industrial and Engineering Chemistry. 90, 358–370, (2020). DOI: https://doi.org/10.1016/j.jiec.2020.07.037
[4]. M.B. Nguyen, G.H. Le, T. Duy, Q.K. Nguyen, T. Trang, T. Pham, T. Lee, T.A. Vu, "Bimetallic Ag-Zn-BTC/GO composite as highly efficient photocatalyst in the photocatalytic degradation of reactive yellow 145 dye in water", Journal of Hazardous Materials. 420, 126560, (2021). DOI: https://doi.org/10.1016/j.jhazmat.2021.126560
[5]. S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. "Yanagida, Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells", Journal of Physical Chemistry B. 107, 8607–8611, (2003). DOI: https://doi.org/10.1021/jp034773w
[6]. W. Wong, H.Y. Wong, A.B.M. Badruzzaman, H.H. Goh, M. Zaman, "Recent advances in exploitation of nanomaterial for arsenic removal from water: A review", Nanotechnology. 28 (2017). DOI: https://doi.org/10.1088/1361-6528/28/4/042001
[7]. T.H. Nguyen, A.T. Vu, V.H. Dang, J.C.S. Wu, M.T. Le, "Photocatalytic Degradation of Phenol and Methyl Orange with Titania-Based Photocatalysts Synthesized by Various Methods in Comparison with ZnO–Graphene Oxide Composite", Topics in Catalysis. 63, 1215–1226, (2020). DOI: https://doi.org/10.1007/s11244-020-01361-5
[8]. M.M. Ali, M.J. Haque, M.H. Kabir, M.A. Kaiyum, M.S. Rahman, "Nano synthesis of ZnO–TiO2 composites by sol-gel method and evaluation of their antibacterial, optical and photocatalytic activities", Results in Materials. 11, 100199, (2021). DOI: https://doi.org/10.1016/j.rinma.2021.100199
[9]. J.E. Mondloch, M.J. Katz, W.C. Isley, P. Ghosh, P. Liao, W. Bury, G.W. Wagner, M.G. Hall, J.B. Decoste, G.W. Peterson, R.Q. Snurr, C.J. Cramer, J.T. Hupp, O.K. Farha, "Destruction of chemical warfare agents using metal-organic frameworks", Nature Materials. 14, 512–516, (2015). DOI: https://doi.org/10.1038/nmat4238
[10]. L. Song, T. Zhao, D. Yang, X. Wang, X. Hao, Y. Liu, S. Zhang, Z.Z. Yu, "Photothermal graphene/UiO-66-NH2 fabrics for ultrafast catalytic degradation of chemical warfare agent simulants", Journal of Hazardous Materials. 393, 122332, (2020). DOI: https://doi.org/10.1016/j.jhazmat.2020.122332
[11]. S. Pareek, J.K. Quamara, "Dielectric and optical properties of graphitic carbon nitride–titanium dioxide nanocomposite with enhanced charge seperation", Journal of Materials Science. 53, 604–612, (2018). DOI: https://doi.org/10.1007/s10853-017-1506-7
[12]. Y. Wu, T. Liu, J. Yuan, C. Liu, P. Wu, J. Lu, X. Wang, "The preparation and study of multilayer structured SiO2–TiO2 film: the effects of photonic crystals on enhanced photocatalytic properties", Journal of Materials Science. 55, 11095–11105, (2020). DOI: https://doi.org/10.1007/s10853-020-04836-8
[13]. D.K. Muthee, B.F. Dejene, "The effect of tetra isopropyl orthotitanate (TIP) concentration on structural, and luminescence properties of titanium dioxide nanoparticles prepared by sol-gel method", Materials Science in Semiconductor Processing. 106, 104783, (2020). DOI: https://doi.org/10.1016/j.mssp.2019.104783
[14]. M.D. Donohue, G.L. Aranovich, "Classification of Gibbs adsorption isotherms", Advances in Colloid and Interface Science. 76–77, 137–152, (1998). DOI: https://doi.org/10.1016/S0001-8686(98)00044-X
[15]. H. Environments, "Zr (OH)4/GO Nanocomposite for the Degradation of Nerve Agent Soman ( GD )" in High-Humidity Environments, Materials (Basel). 13, 2954, (2020). DOI: https://doi.org/10.3390/ma13132954
[16]. P. Nasiripur, M. Zangiabadi, M.H. Baghersad, "Visible light photocatalytic degradation of methyl parathion as chemical warfare agents simulant via GO-Fe3O4/Bi2MoO6 nanocomposite", Journal of Molecular Structure. 1243, 130875, (2021). DOI: https://doi.org/10.1016/j.molstruc.2021.130875
[17]. D. Van Le, M.B. Nguyen, P.T. Dang, T. Lee, T.D. Nguyen, "Synthesis of a UiO-66/g-C3N4 composite using terephthalic acid obtained from waste plastic for the photocatalytic degradation of the chemical warfare agent simulant, methyl paraoxon", RSC Advances. 12, 22367–22376, (2022). DOI: https://doi.org/10.1039/D2RA03483B