The design of wideband leakage canceller for FMCW radars

15 views

Authors

  • Mai Thanh Thao Le Quy Don Technical University
  • Vo Van Phuc Institute of Radar, Academy of Military Science and Technology
  • Tran Viet Hung Le Quy Don Technical University
  • Hoang Minh Thien (Corresponding Author) Le Quy Don Technical University

DOI:

https://doi.org/10.54939/1859-1043.j.mst.103.2025.22-30

Keywords:

Continuous Wave Radar; Frequency Modulated Continuous Wave; Leakage Cancellation; Self-Interference Cancellation; Wideband.

Abstract

The Frequency Modulated Continuous Wave (FMCW) radar is widely applied in various fields such as military, transportation, and aviation. However, in an FMCW radar system that uses a single antenna for both transmission and reception, leakage signals from the transmitter can enter the receiver due to the imperfect isolation of the circulator and the impedance mismatch of the antenna. This issue can degrade system performance, distort the reflected signal from the target, and affect the detection capability of small targets in the close range. This paper proposes an effective wideband leakage cancellation method utilizing an RF-domain canceller structure combined with a discrete phase control mechanism for narrow sub-bands. The system is designed to automatically adjust the phase shift to effectively cancel the leakage signal across the entire frequency band. Simulation results on ADS Keysight software demonstrate that the proposed leakage canceller achieves over 40 dB cancellation within a 500 MHz bandwidth, which is 4.5 times higher than the conventional method.

References

. Beasley, P., Stove, A., Reits, B. and As, B, “Solving the problems of a single antenna frequency modulated CW radar”, IEEE International Radar Conference, pp. 391–395. (1990).

. Songcheol, H.A.: “Quadrature radar topology with Tx leakage canceller for 24-GHz radar applications”. IEEE Trans. Microw. Theory Tech., 55, 1438–1444, (2007).

. Choul-Young, K.; Jeong-Geun, K.; Baek, D.; Songcheol, H.: “A circularly polarized balanced radar front-end with a single antenna for 24-GHz radar applications”. IEEE Trans. Microw. Theory Tech., 57, 293–297, (2007). DOI: https://doi.org/10.1109/TMTT.2008.2009902

. Han Lim, L.; Won-Gyu, L.; Oh, K.-S.; Jong-Won, Y.: “24 GHz balanced Doppler radar front-end with Tx leakage canceller for antenna impedance variation and mutual coupling”. IEEE Trans. Antennas Propag., 59, 4497–4504, (2011). DOI: https://doi.org/10.1109/TAP.2011.2165486

. Jeong-Geun, K.; Sangsoo, K.; Sanghoon, J.; Jae-Woo, P.; Songcheol, H.: “Balanced topology to cancel Tx leakage in CW radar”. IEEE Microw. Compon. Lett., 14, 443–445, (2004).

. Gonzalez, M.A.; Grajal, J.; Asensio, A.; Madueno, D.; Requejo, L.: “A detailed study and implementation of an RPC for LFM-CW radar”, in Proc. Eur. Radar Conf., Manchester, England, (2006). DOI: https://doi.org/10.1109/EURAD.2006.280341

. Kuo, H.C.; Wang, H.-H.; Wang, P.C.; Chuang, H.R.; Lin, F.-L.: “60-GHz millimeter-wave life detection system with clutter canceller for remote human vital-signal sensing”, in Proc. IEEE MTT-S Int. Microwave Workshop Series on Millimeter Wave Integration Technologies, Sitges, Spain, (2011). DOI: https://doi.org/10.1109/IMWS3.2011.6061896

. T. W. Xiong, X. Tan, J. T. Xi and H. Min, “High TX-to-RX Isolation in UHF RFID Using Narrowband leaking carrier canceller," in IEEE Microwave and Wireless Components Letters, vol. 20, no. 2, pp. 124-126, (2010). DOI: https://doi.org/10.1109/LMWC.2009.2038620

. H. Su, Z. Wang and R. Farrell, "Compressed-sampling-based behavioural modelling technique for wideband RF transmitter leakage cancellation system," 2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Lisbon, Portugal, pp. 1-4, (2016). DOI: https://doi.org/10.1109/SMACD.2016.7520742

. M. Mahdi, M. Darwish, H. Tork, A. ElTager, “Animprovedself‐interferencecanceller forX‐bandradar transceivers”, IETMicrowaves,Antennas&Propagation, Volume15, Issue11, pp.1381-1392, (2021). DOI: https://doi.org/10.1049/mia2.12177

. J.-G. Kim, S. Ko, S. Jeon, J.-W. Park, and S. Hong, “Balanced topology to cancel Tx leakage in CW radar”, IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 443–445, (2004). DOI: https://doi.org/10.1109/LMWC.2004.832080

. C.-Y. Kim et al., “Tx leakage cancellers for 24 GHz and 77 GHz vehicular radar applications”, in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1402–1405, (2006). DOI: https://doi.org/10.1109/MWSYM.2006.249531

. C. Y. Kim, J. G. Kim, and S. Hong, “A quadrature radar topology with Tx leakage canceller for 24-GHz radar applications,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 7, pp. 1438–1444, (2007). DOI: https://doi.org/10.1109/TMTT.2007.900316

. M. Yuehong, L. Qiusheng and Z. Xiaolin, “Research on carrier leakage cancellation technology of FMCW system,” 2016 18th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea (South), pp. 7-9, (2016), doi: 10.1109/ICACT.2016.7423252. DOI: https://doi.org/10.1109/ICACT.2016.7423252

. Ginzberg, N., et al.: “A simultaneous transmit‐receive quadrature balanced RF front‐end with wideband digital self‐interference cancellation”. In: 2019 IEEE MTT‐S international Microwave Symposium, pp. 618–621. Boston, MA (2019). DOI: https://doi.org/10.1109/MWSYM.2019.8700644

. Y. Zhang, Q. Wang, H. Qin and J. Meng, "Adaptive self-interference cancellation system for microwave LFMCW radar with optimal delay matching", 2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Sapporo/APEMC), Sapporo, Japan, pp. 729-732, (2019). DOI: https://doi.org/10.23919/EMCTokyo.2019.8893683

Downloads

Published

26-05-2025

How to Cite

[1]
Mai Thanh Thao, Vo Van Phuc, Tran Viet Hung, and D. T. Hoang Minh, “The design of wideband leakage canceller for FMCW radars”, JMST, vol. 103, no. 103, pp. 22–30, May 2025.

Issue

Section

Electronics & Automation