Determination of winding destroy limit area for a power series of amorphous core transformers

16 views

Authors

DOI:

https://doi.org/10.54939/1859-1043.j.mst.103.2025.11-21

Keywords:

Transformer; Amorphous; Electromagnetic force; Magnetic field; Short -circuit; Magnetic field; Finite element method.

Abstract

The amorphous steel core transformer features a unique structure with a rectangular winding, resulting in an uneven distribution of electromagnetic force compared to the circular winding of silicon core transformers. Consequently, evaluating the electromagnetic added value and identifying the destructive areas of the winding is crucial. In this paper, the combination of Matlab and the finite element technique is developed to calculate the magnetic field, short-circuit current, and electromagnetic force for a 3-phase amorphous transformers (22/0.4 kV) during short-circuit faults. The findings establish a relationship between the electromagnetic force value during a short circuit and the winding radius, as well as identify the areas where the winding damage is confined based on the transformer power sequence. These research results assist designers, manufacturers, and transformer operators in determining the appropriate harmful conditions of short-circuit electromagnetic force for the windings.

References

[1]. K. Dawood, F. Elieyioğlu and S. Tursun, "Experimental comparison of weight and cost for MOH and amorphous transformer cores," 2024 5th International Conference on Communications, Information, Electronic and Energy Systems (CIEES), Veliko Tarnovo, Bulgaria, pp. 1-4, (2024). DOI: 10.1109/CIEES62939.2024.10811337. DOI: https://doi.org/10.1109/CIEES62939.2024.10811337

[2]. Z Z. Wang, Z. Shao, S. Niu, B. Jia, X. Chen and X. Dai, "Study of transformer winding vibration characteristics under electromagnetic field and structural force field," 2023 IEEE 4th China International Youth Conference On Electrical Engineering (CIYCEE), Chengdu, China, pp. 1-6, (2023). DOI: 10.1109/CIYCEE59789.2023.10401641. DOI: https://doi.org/10.1109/CIYCEE59789.2023.10401641

[3]. L. Roginskaya, Z. Yalalova, A. Gorbunov, and J. Rakhmanova, “Features of amorphous steel magnetic cores for transformers operating at mains frequency,” Proc. - ICOECS Int. Conf. Electrotech. Complexes Syst., pp. 12–16, (2020). DOI: 10.1109/ICOECS50468.2020.9278451. DOI: https://doi.org/10.1109/ICOECS50468.2020.9278451

[4]. M. E. M. Nazmunnahar M, S. Simizu, P. R. Ohodnicki and S. Bhattacharya, “Finite-element analysis modeling of high-frequency single-phase transformers enabled by metal amorphous nanocomposites and calculation of leakage inductance for different winding topologies,” IEEE Trans. Magn., vol. 55, no. 7, pp. 1–11, (2019). DOI: 10.1109/TMAG.2019.2904007. DOI: https://doi.org/10.1109/TMAG.2019.2904007

[5]. Y. Zhai, R. Zhu, Q. Li, X. Wang, Y. Gu and S. Li, "Simulation research on electrodynamic force and deformation of transformer windings under short-circuit condition," 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), pp. 1-4, (2022). DOI: 10.1109/ICHVE53725.2022.9961358. DOI: https://doi.org/10.1109/ICHVE53725.2022.9961358

[6]. S. Bal, T. Demirdelen and M. Tümay, "Three-phase distribution transformer modeling and electromagnetic transient analysis using ANSYS Maxwell," 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, pp. 1-4, (2019). DOI: 10.1109/ISMSIT.2019.8932953. DOI: https://doi.org/10.1109/ISMSIT.2019.8932953

[7]. D. C. Phi, D. T. Bao, L. K. Dinh, and N. H. Vu, "Investigate the frequency effect to the deformation and vibration of amorphous steel core transformers," 2023 8th International Scientific Conference on Applying New Technology in Green Buildings (ATiGB), Danang, Vietnam, pp. 136-141, (2023). DOI: 10.1109/ATiGB59969.2023.10364391. DOI: https://doi.org/10.1109/ATiGB59969.2023.10364391

[8]. E. Kaewchinda and M. Thawornphan, "Improving the efficiency of power distribution systems with distribution transformers amorphous core type," 2023 IEEE PES 15th Asia-Pacific Power and Energy Engineering Conference (APPEEC), Chiang Mai, Thailand, pp. 1-4, (2023). DOI: 10.1109/APPEEC57400.2023.10562014. DOI: https://doi.org/10.1109/APPEEC57400.2023.10562014

[9]. A. C. De Azevedo, A. C. Delaiba, J. C. De Oliveira, B. C. Carvalho, and H. D. S. Bronzeado, “Transformer mechanical stress caused by external short-circuit : a time domain approach,” Present. Int. Conf. Power Syst. Transients, in Lyon, France, June 4-7, pp. 1–6, (2007). DOI: https://doi.org/10.1109/TDCLA.2006.311522

[10]. H. Ahn, J. Lee, J. Kim, Y. Oh, and S. Jung, “Finite-element analysis of short-circuit electromagnetic force in power transformer,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1267–1272, (2011). DOI: 10.1109/TIA.2011.2126031. DOI: https://doi.org/10.1109/TIA.2011.2126031

[11]. H. Ahn, Y. Oh, J. Kim, J. Song, and S. Hahn, “Experimental verification and finite element analysis of short-circuit electromagnetic force for dry-type transformer,” IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 819–822, (2012). DOI: https://doi.org/10.1109/TMAG.2011.2174212

[12]. D. T. Bao D. C. Phi, H. D. Hoan and L. T. Hiep, “Analysis of current and electromagnetic force acting on winding in cases of short circuits of amorphous transformer,” Appl. New Technol. Green Build. ATiGB 2023, pp. 201–208, (2023). DOI: 10.1109/ATiGB59969.2023.10364484. DOI: https://doi.org/10.1109/ATiGB59969.2023.10364484

[13]. Y. Song, Y. Lu, L. Zhang et al., "Electromagnetic force analysis of short-circuit faults in transformer windings based on fractional-order models," 2024 3rd Asian Conference on Frontiers of Power and Energy (ACFPE), Chengdu, China, pp. 514-520, (2024). DOI: 10.1109/ACFPE63443.2024.10800964. DOI: https://doi.org/10.1109/ACFPE63443.2024.10800964

[14]. K. Dawood, S. Tursun and G. Kömürgöz, "Optimized gap positions for improved electromagnetic forces in dry-type transformer design," 2024 6th Global Power, Energy and Communication Conference (GPECOM), Budapest, Hungary, pp. 211-215, (2024). DOI: 10.1109/GPECOM61896.2024.10582721. DOI: https://doi.org/10.1109/GPECOM61896.2024.10582721

[15]. Y. Yu, Z. Zhanlong, H. Wenhao, C. Junxin and L. Dingyuan, "Simulation analysis of inrush current and electromagnetic-force characteristics of converter transformer during no-load closing," 2023 2nd International Conference on Power Systems and Electrical Technology (PSET), Milan, Italy, pp. 137-143, (2023). DOI: 10.1109/PSET59452.2023.10346443. DOI: https://doi.org/10.1109/PSET59452.2023.10346443

[16]. Q. Wang, L. Wang, Z. Yuan et al., "Analysis of three-phase short-circuit electrodynamic variation characteristics of power transformers," 2023 7th International Conference on Electrical, Mechanical and Computer Engineering (ICEMCE), Xi'an, China, pp. 397-400, (2023). DOI: 10.1109/ICEMCE60359.2023.10490632. DOI: https://doi.org/10.1109/ICEMCE60359.2023.10490632

[17]. Y. Jing, C. Chen, Y. Liu, Z. Yu and Y. Li, "Analysis of winding forces in transformer under no-load closing condition based on field-circuit coupling method," 2023 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, pp. 1-2, (2023). DOI: 10.1109/ASEMD59061.2023.10369219. DOI: https://doi.org/10.1109/ASEMD59061.2023.10369219

[18]. Y. Zhao, T. Wen, Y. Li, H. Ni, Q. Zhang and W. Chen, "A FEM-based simulation of electromagnetic forces on transformer windings under short-circuit," 2018 IEEE International Power Modulator and High Voltage Conference (IPMHVC), Jackson, WY, USA, pp. 425-429, (2018). DOI: 10.1109/IPMHVC.2018.8936726. DOI: https://doi.org/10.1109/IPMHVC.2018.8936726

[19]. Q. Z. Mingkai Jin, T. Wen, W. Chen et al., "Influence of frequency components of short-circuit electromagnetic force on vibration characteristics of power transformer windings," 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), Chongqing, China, pp. 01-04, (2022). DOI: 10.1109/ICHVE53725.2022.9961671. DOI: https://doi.org/10.1109/ICHVE53725.2022.9961671

[20]. K. Dawood and G. Komurgoz, “Investigating effect of electromagnetic force on sandwich winding transformer using finite element analysis,” 2021 28th Int. Work. Electr. Drives Improv. Reliab. Electr. Drives, IWED 2021 - Proc., pp. 1–5, (2021). DOI: 10.1109/IWED52055.2021.9376371. DOI: https://doi.org/10.1109/IWED52055.2021.9376371

[21]. C. Zhao, W. Chen, M. Jin, T. Wen et al., “Short-circuit electromagnetic force distribution characteristics in transformer winding transposition structures,” IEEE Trans. Magn., vol. 56, no. 12, pp. 1–8, (2020). DOI: 10.1109/TMAG.2020.3028832. DOI: https://doi.org/10.1109/TMAG.2020.3028832

[22]. D. T. Bao and D. C. Phi, “Calculation of the magnetic field and inrush current in a three-phase transformer,” Proc. 2020 Appl. New Technol. Green Build. ATiGB 2020, pp. 94–99, (2020). DOI: 10.1109/ATiGB50996.2021.9423111. DOI: https://doi.org/10.1109/ATiGB50996.2021.9423111

Downloads

Published

26-05-2025

How to Cite

[1]
B. Doan Thanh, “Determination of winding destroy limit area for a power series of amorphous core transformers”, JMST, vol. 103, no. 103, pp. 11–21, May 2025.

Issue

Section

Electronics & Automation