Identification of time-varying parameters of linear time-varying systems
95 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.CAPITI.2024.168-174Keywords:
Identification; Linear time-varying system; Parametrization; Linear regression model.Abstract
Identification of time-varying parameters of linear time-varying systems is a complex problem, and until today there is still no general method to solve the above problem. In this article, a new identification method is proposed to help parameterize the control object model with parameters that vary linearly over time into a linear regression model. Then combine the use of dynamic regressor extension and mixing method (DREM) to estimate the parameters of this model to help increase the accuracy of convergence of the parameters to the real value. Simulations on Matlab/Simulink demonstrate the correctness of the proposed algorithm.
References
[1]. A.A. Bobtsov, A.G. Nagovitsina, “Adaptive control of linear nonstationary objects output,” Avtomatika i Telemehanika, no. 12, pp. 163–174, (2006). DOI: https://doi.org/10.1134/S0005117906120137
[2]. A.A. Bobtsov, V.V. Grigoryev, A.G. Nagovitsina, “Adaptive control algorithm by nonstationary object in terms of disturbance and delay time,” Mekhatronika, Avtomatizatsiya, Upravleniye, no. 1, pp. 8–14, (2007).
[3]. A.M. Cykunov, “Robust control of nonstationary objects,” Avtomatika i Telemehanika, no. 2, pp. 117–125, (1996).
[4]. Ju.N. Andreev, “Control of finite-dimensional linear objects,” Moscow, Nauka, 424 p, (1976).
[5]. N.E. Barabanov, “On stabilization of linear nonstationary systems with uncertainty in coefficients,” Avtomatika i Telemehanika, no. 10, pp. 30–37, (1990).
[6]. K.S. Tsakalis, P.A. Ioannou, “Linear time varying systems: control and adaptation,” Englewood Cliffs, NJ, Prentice-Hall, (1993).
[7]. Y. Zhang, B. Fidan, P.A. Ioannou, “Backstepping control of linear time-varying systems with known and unknown parameters,” IEEE Trans. Automat. Contr, vol. 48, no. 11, p. 1908–1925, (2003). DOI: https://doi.org/10.1109/TAC.2003.819074
[8]. V.D. Jurkevich, “Synthesis of nonlinear nonstationary control systems with multi-tempo processes,” SPb, Nauka, 288 p, (2000).
[9]. C. Wang, V.T. Le, A.A. Pyrkin, S.A. Kolyubin, A.A. Bobtsov, “Identification of Piecewise Linear Parameters of Regression Models of Non-Stationary Deterministic Systems,” Avtomatika i Telemehanika, no. 12, pp. 71–82, (2018). DOI: https://doi.org/10.31857/S000523100002858-7
[10]. P.A. Ioannou, J. Sun, “Robust adaptive control,” California, PTR Prentice-Hall, (1996).
[11]. S. Aranovskiy, A. Bobtsov, R. Ortega, A. Pyrkin, “Performance Enhancement of Parameter Estimators via Dynamic Regressor Extension and Mixing,” IEEE Trans. Automat. Control, vol. 62, no. 7, pp. 3546–3550, (2016). DOI: https://doi.org/10.1109/TAC.2016.2614889
[12]. S. Sastry, M. Bodson, “Adaptive Control: Stability, Convergence and Robustness,” Courier Dover Publications, 400 p, (2011).
[13]. A.A. Pyrkin, A.A. Bobtsov, A.A. Vedyakov, S.A. Kolyubin, “Estimation of polyharmonic signal parameters,” Avtomatika i Telemehanika, no. 8, pp. 94–114, (2015). DOI: https://doi.org/10.1134/S0005117915080068
[14]. A. Pyrkin, F. Mancilla-David, R. Ortega, A. Bobtsov, S. Aranovskiy, “Identification of Photovoltaic Arrays’ Maximum Power Extraction Point via Dynamic Regressor Extension and Mixing,” Int. J. Adaptive Control Signal Process, vol. 31, no. 9, pp. 1337–1349, (2017). DOI: https://doi.org/10.1002/acs.2768
[15]. A.A. Bobtsov, A.A. Pyrkin, R. Ortega, “Аdaptive flux observer for permanent magnet synchronous motors”, Sci.Tech. J. Inf. Technol. Mech. Opt, vol. 15, no. 1, pp. 40–45, (2015). DOI: https://doi.org/10.17586/2226-1494-2015-15-1-40-45