An efficient decoding of RS-BCH product codes using hybrid root-finding of the polynomial over finite fields
DOI:
https://doi.org/10.54939/1859-1043.j.mst.CSCE8.2024.14-23Keywords:
Product codes; BCH code; Reed-Solomon code; Finite field.Abstract
This paper proposes an efficient decoding method of product codes with component codes being BCH and Reed-Solomon codes characterized by low complexity and latency achieved through parallel computation and the hybrid approach to solving the error locator polynomial over finite fields. The proposed method can be implemented on low-cost hardware platforms, making it suitable for applications in communication systems that highly require reliability and latency.
References
[1]. Berlekamp, Elwyn R. “Algebraic coding theory (revised edition)”. World Scientific, (2015). DOI: https://doi.org/10.1142/9407
[2]. Sarwate, Dilip V., and Naresh R. Shanbhag. "High-speed architectures for Reed-Solomon decoders." IEEE Transactions on Very Large Scale Integration (VLSI) Sys-tems 9.5, (2001). DOI: https://doi.org/10.1109/92.953498
[3]. Fedorenko, Sergei V., and Peter V. Trifonov. "Finding roots of polynomials over finite fields" IEEE Transactions on Communications 50.11, (2002). DOI: https://doi.org/10.1109/TCOMM.2002.805269
[4]. Sukmadji, Alvin Y., and Frank R. Kschischang. "Performance-Complexity-Latency Trade-offs of Concatenated RS-BCH Codes" IEEE Transactions on Communications, (2024). DOI: https://doi.org/10.1109/TCOMM.2024.3369731
[5]. Paul J. Crepeau, “Classification of Error Locator Polynomials for Double Error Correcting BCH Codes”, IEEE Trans. Communications, Vol.46, (1998). DOI: https://doi.org/10.1109/26.705389
[6]. J. H. Cho and W. Y. Sung, “Strength-Reduced Parallel Chien Search Architecture for Strong BCH Codes,” IEEETrans.CircuitsSyst.II, vol. 55, no. 5, (2008). DOI: https://doi.org/10.1109/TCSII.2007.914898
[7]. Liu, Xuan, HuiBo Jia, and Cheng Ma. "Error-correction codes for optical disk storage." Advances in Optical Data Storage Technology. Vol. 5643. SPIE, (2005). DOI: https://doi.org/10.1117/12.573382
[8]. Hoan Pham Khac, et al. "The hybrid method for finding the roots of a polynomial over finite fields based on affine expansion." Journal of Military Science and Technology CSCE7: 71-80, (2023). DOI: https://doi.org/10.54939/1859-1043.j.mst.CSCE7.2023.71-80
[9]. Hoan Pham Khac, Thai Ha Tran, Son Ha Vu, “An algeraic transformation method to solving equations in the extened alois field”, Journal of science and technique, Vol. 17, No. 4, (2022).
[10]. Pham Khac Hoan, Nguyen Tien Thai, Vu Son Ha, “Low latency BCH decoder using the affine polynomial over the finite field”, Journal of military science and technology, Special issue No 6, (2022). DOI: https://doi.org/10.54939/1859-1043.j.mst.CSCE6.2022.105-113
[11]. Mesnager S., Kim K. H., Choe J. H., Lee D. N. “Solving some equations finite fields” Finite Fields and Their Applications, (2020). DOI: https://doi.org/10.1016/j.ffa.2020.101746
[12]. F. J. MacWilliams, N. J. A.Sloane, “The theory of error correction codes” Elselvier, 1977.
[13]. Tood K. Moon, “Error correction coding: Mathematical methods and algorithms,” John & sons, Inc. (2005).
[14]. Forney, G. David. "Concatenated codes." MIT Press Research Monograph 37,(1966).
[15]. Guo, Li, and Linghsueh Shu. "Class numbers of cyclotomic function fields." Transactions of the American Mathematical Society 351.11, (1999). DOI: https://doi.org/10.1090/S0002-9947-99-02325-9