State feedback sliding mode control SFSMC with pole assignment for single input bilinear systems

State feedback sliding mode control SFSMC with pole assignment for single input bilinear systems

Authors

DOI:

https://doi.org/10.54939/1859-1043.j.mst.CSCE8.2024.24-32

Keywords:

Sliding mode; State feedback control; Bilinear system; Pole placement.

Abstract

This paper presents a method of synthesizing the state feedback sliding mode controller SFSMC for single-input bilinear systems. The existence of the sliding mode is synthesized by the Lyapunov stability criterion. The sliding surface is designed using the pole assignment method. Here, the novel contribution is that system quality has been tuned by only adjusting one parameter  which is completely independent of system dynamics and states. The simulation indicates that the system is stable, and its states converge to zero. The system phase trajectory quickly settles when the parameter is well adjusted.

References

[1]. Đỗ Thị Tú Anh, Nguyễn Doãn Phước, “Ổn định hóa hệ song tuyến liên tục với bộ điều khiển dự báo”, Tạp chí Khoa học và Công nghệ ĐHTN, 120 (06): 73 – 79, (2014) (in Vietnamese).

[2]. Nguyễn Thị Thu Hiền, Lê Hồng Thu, Vũ Thị Oanh, “Xây dựng mô hình phản hồi trạng thái điều khiển động cơ không đồng bộ”, Tạp chí Khoa học và Công nghệ, 204(11): 47 – 51, (2019) (in Vietnamese).

[3]. Khozin Mu'tamar and Janson Naiborhu, “Control design for tracking problem of the bilinear control system using observation matrix and pole placement”, J. Phys.: Conf. Ser, (2021). DOI: https://doi.org/10.1088/1742-6596/1940/1/012009

[4]. Sattar, Y., Oymak, S., & Ozay, N., “Finite Sample Identification of Bilinear Dynamical Systems”, arXiv, (2022). DOI: https://doi.org/10.1109/CDC51059.2022.9992714

[5]. Ghosh, S., & Ruths, J., “Structural control of single-input rank one bilinear systems”, Automatica, No.64, pp. 8-17, (2016). DOI: https://doi.org/10.1016/j.automatica.2015.10.053

[6]. Ghosh, S., & Ruths, J., “On structural controllability of a class of bilinear systems”, 53rd IEEE Conference on Decision and Control, pp. 3137-3142, (2014). DOI: https://doi.org/10.1109/CDC.2014.7039873

[7]. Sun, Y., “On the Global Stabilization for Planar Bilinear Control Systems”, 2018 37th Chinese Control Conference (CCC), pp. 1337-1341, (2018). DOI: https://doi.org/10.23919/ChiCC.2018.8483469

[8]. Barbata, Asma, Michel Zasadzinski, and Harouna Souley Ali., “Stabilization of a class of stochastic nonlinear systems using a bang‐bang controller”, International Journal of Robust and Nonlinear Control 32.12: 6849-6865, (2022). DOI: https://doi.org/10.1002/rnc.6175

[9]. F. Amato, C.C., A. S. Fiorillo and A. Merola, “Stabilization of Bilinear Systems Via Linear State-Feedback Control”, IEEE Transactions on Circuits and Systems II: Express Briefs, 56(1): pp. 76-80, (2009). DOI: https://doi.org/10.1109/TCSII.2008.2008528

[10]. Tognetti, E.S., Calliero, T. R., & Jungers, M., “Output feedback control for bilinear systems: a polytopic approach”, IFAC-PapersOnLine, 52(28): pp. 58-63, (2019). DOI: https://doi.org/10.1016/j.ifacol.2019.12.348

[11]. Goncharov, O.I., “Asymptotic stabilization of a class of bilinear systems by a variable structure feedback”, Diff Equat, No.47, pp. 1582–1591, (2011). DOI: https://doi.org/10.1134/S001226611111005X

[12]. Yeh, Y.-L., “Output feedback tracking sliding mode control for systems with state and input-dependent disturbances”. Actuators, 10, 117, (2021). DOI: https://doi.org/10.3390/act10060117

Downloads

Published

2024-12-30

How to Cite

[1]
D. H. Vu Quoc, “State feedback sliding mode control SFSMC with pole assignment for single input bilinear systems”, JMST’s CSCE, no. CSCE8, pp. 24–32, Dec. 2024.

Issue

Section

Articles
Loading...