Adaptive sliding mode control of a three-mass elastic electromechanical system under parameter uncertainty and external disturbances
8 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.104.2025.25-33Keywords:
Elastic system; Three-mass system; Adaptive sliding mode control; Parameter uncertainty; External time-varying disturbances.Abstract
This paper enhances the control quality of a three-mass elastic electromechanical system under parameter uncertainties and external disturbances. For the control system design, the paper considers the control object as a three-mass elastic electromechanical system with three interdependent control loops. A complete mathematical model of the object is then established. A robust adaptive sliding controller is proposed for the three-mass elastic system to counteract the influence of unknown external disturbances and model uncertainties caused by parameter uncertainty. The highlight of the adaptive sliding controller is its mechanism for adaptively adjusting the controller gain by estimating the upper bound of the combined external disturbances and system uncertainties. Thus, the controller ensures compensation for the influence of the above-mentioned negative factors. The stability of the proposed adaptive control system is investigated using Lyapunov stability theory. Simulation results on MATLAB/Simulink comparing the performance of the proposed adaptive sliding mode controller with the conventional PID controller demonstrate the effectiveness of the proposed approach.
References
[1]. Казаков В. П. “Разработка и сравнительное исследование семейства адаптивных систем управления двух- и трехмассовыми упругими электромеханическими объектами”. Диссертация на соискание ученой степени кандидата технических наук: специальность 05.09.03 Электротехнические комплексы и системы. - Санкт-Петербург. - 223 с, (2011).
[2]. M. Cychowski, R. Jaskiewicz and K. Szabat, "Model Predictive Control of an elastic three-mass drive system with torque constraints," 2010 IEEE International Conference on Industrial Technolo-gy, Via del Mar, Chile, pp. 379-385, (2010), doi: 10.1109/ICIT.2010.5472710. DOI: https://doi.org/10.1109/ICIT.2010.5472710
[3]. Huang Y. J, Kuo T. C, Chang S. H. “Adaptive sliding-mode control for nonlinear systems with uncer-tain parameters”. IEEE Trans Syst Man Cybern B Cybern; 38(2): 534-9, (2008). Doi: 10.1109/TSMCB.2007.910740. PMID: 18348934. DOI: https://doi.org/10.1109/TSMCB.2007.910740
[4]. N. V. Lanh, N. D. Khanh, B. T. Thuy and T. H. Phuong, "Synthesis of Adaptive Control for Electrical Drive System of Opto-Mechanical Complexes under Conditions of Uncertain Parameters, Taking in-to Account the Influence of Clearance and Dry Friction," 2024 ElCon, Saint Petersburg, Russia, pp. 451-454, (2024). DOI: https://doi.org/10.1109/ElCon61730.2024.10468122
[5]. N. T. T. Hien, T. X. Minh. “Enhanced quality of control system design erable connection”. TNU Journal of Science and Technology, 227(08): 475-481, (2022). DOI: 10.34238/tnu-jst.5752. DOI: https://doi.org/10.34238/tnu-jst.5752
[6]. P. T. Thanh, H. H. Son, T. V. Tuyen, L. M. Duong. “Building an adaptive control system for the trac-tion drive system with 2 parallel-coupled engines with elastic links for the direction channel of the ak-230 cannon”. Journal of Science and Technology, 59(2B): 26-33, (2023). DOI: 10.57001/huih5804.2023.074. DOI: https://doi.org/10.57001/huih5804.2023.074
[7]. H. V. Dong, T. X. Kien, N. C. Dinh. “Adaptive Backstepping Control of Electrical Transmission Drives with Elastic, Unknown Backlash and Coulomb Friction Nonlinearity”. ASEAN Journal on Science and Technology for Development, Vol. 27, no. 1 (2017). DOI: 10.29037/ajstd.180. DOI: https://doi.org/10.29037/ajstd.305
[8]. M. Van and S. S. Ge, "Finite-time adaptive sliding mode control for nonlinear robotic systems with uncertainties and disturbances," Automatica, vol. 112, (2020), doi: 10.1016/j.automatica.2019.108672. DOI: https://doi.org/10.1016/j.automatica.2019.108672
[9]. L. Zhang, Z. Liu, and X. Chen, "Adaptive sliding mode control for precision machinery with non-linear disturbances," Control Engineering Practice, vol. 95, (2020), doi: 10.1016/j.conengprac.2019.104256. DOI: https://doi.org/10.1016/j.conengprac.2019.104256
[10]. A. Merabet, "Advanced control strategies for electric drive systems in dynamic environments," IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 6235-6244, (2021), doi: 10.1109/TIE.2020.2998745. DOI: https://doi.org/10.1109/TIE.2020.2998745
[11]. S. Han and J. Lee, "Adaptive dynamic surface control for high-precision motion systems with uncer-tainties," Mechatronics, vol. 75, (2021), doi: 10.1016/j.mechatronics.2021.102513. DOI: https://doi.org/10.1016/j.mechatronics.2021.102513
[12]. Ioannou, Petros A., and Jing Sun. “Robust adaptive control”. Vol. 1. Upper Saddle River, NJ: PTR Prentice-Hall, 856p, (1996).