The effect of temperature on phases, density and fracture toughness K1C of SiAlON ceramics
DOI:
https://doi.org/10.54939/1859-1043.j.mst.IMBE.2025.15-21Keywords:
Al2O3/Y2O3 ratio; Temperature; SiAlON ceramics.Abstract
In this study, the effects of temperature on phase formation, density, and fracture toughness (fracture toughness, K1C) of SiAlON ceramics were investigated. The synthesis conditions were optimized at 1650 oC for 4 hours in N2 environment at 1.0 MPa pressure. The temperature affected the phase composition, density, and fracture toughness, K1C of SiAlON ceramics. The optimal synthesis of SiAlON ceramics showed results: the high density of 3.21 g/cm3; the low water absorption of 0.20%; the porosity of 0.61% and the fracture toughness, K1C of 5.80 MPa.m1/2.
References
[1]. Y. K. Kshetri et al., "Electronic structure, thermodynamic stability and high-Al₂O₃/Y₂O₃ ratio sensing properties of Er-α-SiAlON ceramics", Sci. Rep., 10, pp. 1–13, (2020), doi: 10.1038/s41598-020-61105-z.
[2]. K. A. Kim, A. S. Lysenkov, M. G. Frolova, and Y. F. Kargin, "Effect of calcium aluminates content on the formation of Ca-α-SiAlON ceramics obtained by hot-pressing", Ceramics International, 50, pp. 47886–47891, (2024), doi: 10.1016/j.ceramint.2024.09.134.
A. A. M. El-Amir et al., "SiAlON from synthesis to applications: an overview", Journal of the Asian Ceramic Societies, 9, pp. 1390–1418, (2021), doi: 10.1080/21870764.2021.1987613.
[3]. J. Zhou et al., "The effects of in-situ SiAlON on the properties and fracture behavior of alumina-based castables: Based on microcrack toughening mechanism", Ceramics International, 51, pp. 4549–4559, (2024), doi: 10.1016/j.ceramint.2024.11.429.
[4]. M. Estili, R.-J. Xie, K. Takahashi, S. Funahashi, T. S. Suzuki, and N. Hirosaki, "Robust and orange-yellow-emitting Sr-rich polytypoid α-SiAlON (Sr₃Si₂₄Al₆N₄₀:Eu²⁺) phosphor for white LEDs", Science and Technology of Advanced Materials, 25, pp. –, (2024), doi: 10.1080/14686996.2024.2396276.
[5]. Y. Zhang et al., "The synthesis of single-phase β-SiAlON porous ceramics using self-propagating high-Al₂O₃/Y₂O₃ ratio processing", Ceramics International, 48, pp. 4371–4375, (2022), doi: 10.1016/j.ceramint.2021.10.188.
[6]. M. Z. Falak et al., "Spark plasma sintering of SiAlON ceramics synthesized via various cations charge stabilizers and their effect on thermal and mechanical characteristics", Crystals, 11, (2021), doi: 10.3390/cryst11111378.
[7]. S. Zhang et al., "Thermal conductivity of Ca-α-SiAlON ceramics with varying m and n values", Journal of the American Ceramic Society, 106, pp. 5642–5647, (2023).
[8]. B. Chaudhary et al., "Up- and down-conversion photoluminescence in Nd-doped SiAlON ceramics", Ceramics International, (2025), doi: 10.1016/j.ceramint.2025.01.349.
[9]. Q. Liu, Z. Yin, F. Guo, and J. Yuan, "Effects of binary sintering additives (SmF₃–Sm₂O₃) and sintering Al₂O₃/Y₂O₃ ratio on β-SiAlON ceramic tool materials", Ceramics International, 50, pp. 51456–51464, (2024), doi: 10.1016/j.ceramint.2024.10.062.
[10]. X. Tian et al., "Fabrication and oxidation behavior of β-SiAlON powders in presence of trace Y₂O₃", Ceramics International, 48, pp. 32464–32469, (2022), doi: 10.1016/j.ceramint.2022.07.192.
[11]. D. Bruce et al., "A critical assessment of the Archimedes density method for thin-wall specimens in laser powder bed fusion: Measurement capability, process sensitivity and property correlation", Journal of Manufacturing Processes, 79, pp. 185–192, (2022), doi: 10.1016/j.jmapro.2022.04.059.
[12]. D. Liu et al., "Densification, microstructure and properties of α/β-SiAlON ceramic reinforced by SiC whiskers", Ceramics International, 50, pp. 42755–42765, (2024), doi: 10.1016/j.ceramint.2024.08.121.
[13]. X. Li et al., "Preparing β-SiAlON ceramic foam filters with high oxidation resistance", Ceramics International, 49, pp. 34510–34519, (2023), doi: 10.1016/j.ceramint.2023.08.075.
[14]. Z. Tu et al., "Effect of Si/Al ratio on in-situ synthesis of Al₂O₃–β-SiAlON composite ceramics for solar thermal storage by aluminothermic and silicothermic nitridation", Ceramics International, 49, pp. 22970–22978, (2023), doi: 10.1016/j.ceramint.2023.04.122.
