An enhanced random noise suppression method for fiber optic gyroscopes to improve gyrocompass performance

14 views

Authors

  • Nguyen Trong Yen Institute of Missile, Academy of Military Science and Technology
  • Nguyen Sy Long Institute of Missile, Academy of Military Science and Technology
  • Vu Doan Ket (Corresponding Author) Institute of Missile, Academy of Military Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.105.2025.52-59

Keywords:

Gyrocompass; Fiber optic gyroscope; Inertial sensor; Strapdown Inertial Navigation System (SINS); Adaptive Kalman filter.

Abstract

This paper presents a method for reducing random noise and zero-bias instability in the signal of a fiber optic gyroscope, based on a hybrid algorithm that combines an autoregressive mathematical model with an adaptive Kalman filter using a Sage sliding window. The results of the study demonstrate that this approach shortens the gyrocompass initialization time while maintaining the accuracy of defining initial orientation parameters, particularly the initial azimuth angle. Consequently, it enhances the overall performance of the gyrocompass in strapdown inertial navigation systems, especially in scenarios requiring rapid startup.

References

[1]. В. В. Матвеев, В. Я. Распопов, “Основы по-строения бесплатформенных инерциальных нави-гационных систем,” СПб: РНЦ РФ ОАО «Концерн «ЦНИИ «Электроприбор», с. 159-161, (2009).

[2]. Shipeng Han, Zhen Meng, Olatunji Omisore, Toluwanimi Akinyemi, Yuepeng Yan, “ Random Error Reduction Algorithms for MEMS Inertial Sensor Accuracy Improvement,” A Review. Micromachines, vol. 11, iss. 11, pp. 1021-1057, (2020). doi: 10.3390/mi11111021,.

[3]. N. T. Yen, A. M. Boronakhin, R. V. Shalymov, D. Y. Larionov, N. Q. Khanh, “Comparison of Adaptive Kalman Filters for Suppressing Random Noise of Optical Gyroscopes in Inertial Navigation,” IEEE Seminar on Signal Processing, (2023), doi: 10.1109/IEEECONF60473.2023.10366085, pp. 87-91.

[4]. Lei Huang., “Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter,” Sensors, vol. 15, iss. 10, pp. 25277–25286, (2015). doi:10.3390/s151025277.

[5]. Pengfei Wang, Guangchun Li, Yanbin Gao, “A Compensation Method for Gyroscope Random Drift Based on Unscented Kalman Filter and Support Vector Regression Optimized by Adaptive Beetle Antennae Search Algorithm,” Applied Intelligence, vol. 53, pp. 4350–4365, (2022). doi: 10.1007/s10489-022-03734-7.

[6]. Sun J., Xu X., Liu Y., Zhang T., Li Y., “FOG Random Drift Signal Denoising Based on the Improved AR Model and Modified Sage-Husa Adaptive Kalman Filter,” Sensors. Vol. 16, no. 7. pp. 1–19, (2016), doi: 10.3390/s16071073

[7]. Артамонов Н. В., Ивин Е. А., Курбацкий А. Н., Фантаццини Д., “Введение в анализ временных рядов,” учебное пособие для вузов: Московский государственный университет имени М. В. Ломоносова, Московская школа экономики, Кафедра эконометрики и математических методов экономики. – Вологда : ВолНЦ РАН, c. 18-25, (2021),.

[8]. Robert Nau, “ARIMA models for time series forecasting,”, (2022). Available at: https://people.duke.edu/~rnau/411arim3.htm.

[9]. Shesheng Gao, Wenhui Wei, Yongmin Zhong, Subic A., “Sage Windowing and Random Weighting Adaptive Filtering Method for Kinematic Model Error,” IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 2, pp. 1488–1500, (2015). doi: 10.1109/TAES.2015.130656.

[10]. Научно-производственная Компания "Оптолинк", “http://www.optolink.ru/en/products/strapdown_inertial_navigation_systems.

Downloads

Published

25-08-2025

How to Cite

[1]
Nguyen Trong Yen, Nguyen Sy Long, and Đoàn K. Vũ, “An enhanced random noise suppression method for fiber optic gyroscopes to improve gyrocompass performance”, JMST, vol. 105, no. 105, pp. 52–59, Aug. 2025.

Issue

Section

Electronics & Automation

Most read articles by the same author(s)