Synthesis of nonlinear robust control for aerial vehicles under parameter uncertainties

12 views

Authors

  • Nguyen Viet Phuong (Corresponding Author) Institute of Missile, Academy of Military Science and Technology
  • Nguyen Duy Khanh Faculty of Industrial Automation and Electrical Engineering, Saint Petersburg Electrotechnical University

DOI:

https://doi.org/10.54939/1859-1043.j.mst.105.2025.28-35

Keywords:

Aerial vehicle; Robust nonlinear control; Sliding mode control; Longitudinal motion; Parameter uncertainty.

Abstract

This paper proposes a nonlinear robust control strategy for the longitudinal motion channel of an aerial vehicle (AV) to enhance flight control quality under parameter uncertainties. A mathematical model of the control object is developed, and a robust nonlinear controller is synthesized using sliding mode control (SMC) combined with a reference model. The controller parameters are designed based on Lyapunov stability theory, ensuring the robust stability of the closed-loop system. A linear modal controller is developed to compare with the proposed nonlinear controller. Comparative simulations conducted in MATLAB/Simulink highlight the superior performance of the proposed controller in terms of tracking accuracy and robustness.

References

[1]. S. Sui, Y. Yao, and F. Zhu, “An anti-disturbance attitude control method for fixed-wing unmanned aerial vehicles based on an integral sliding mode under complex disturbances during sea flight,” Drones, vol. 9, no. 3, p. 164, (2025), doi: 10.3390/drones9030164.

[2]. M. Xie and H. Ren, “Formation control of unmanned aerial vehicles based on cooperative sliding mode adaptive control,” Int. Core J. Eng., vol. 11, no. 4, pp. 196–206, (2025), doi: 10.6919/ICJE.202504_11(4).0022.

[3]. A. K. Khotimah et al., “Control strategy of unmanned aerial vehicle (UAV) by using sliding mode control method,” J. Phys.: Conf. Ser., vol. 2719, p. 012042, (2024), doi: 10.1088/1742-6596/2719/1/012042.

[4]. Y. Wang et al., “Fixed-time neuro-sliding mode controller design for quadrotor UAV transporting a suspended payload,” Neurocomputing, vol. 492, pp. 147–160, (2023), doi: 10.1016/j.neucom.2023.04.056.

[5]. L. A. Alsafadi and I. V. Mironova, “Sliding mode controller design for unmanned aerial vehicles with unmodeled polytopic dynamics,” IFAC-PapersOnLine, vol. 54, no. 21, pp. 204–209, (2021), doi: 10.1016/j.ifacol.2021.10.486.

[6]. R. Shrestha, I. Oh, and S. Kim, “A survey on operation concept, advancements, and challenging issues of urban air traffic management,” Drones, vol. 7, no. 2, p. 89, (2023), doi: 10.3390/drones7020089.

[7]. Y. Zhang and J. Liu, “Integrating artificial intelligence and control systems for autonomous platforms: A review,” IEEE Trans. Ind. Informat., vol. 19, no. 6, pp. 3048–3058, (2023), doi: 10.1109/TII.2022.3206543.

[8]. Соколов, Д. М. “Аэродинамические характеристики БПЛА при маневрировании на малых высотах,” Труды СПбПУ, т. 529, № 1, стр. 78–92, (2023), doi: 10.18721/JEST.52901.

[9]. X. Rong and U. Ozguner, "Sliding mode control of a class of underactuated systems," Automatica, vol. 44, pp. 233–248, (2008), doi: 10.1016/j.automatica.2007.05.014.

[10]. H. K. Khalil, “Nonlinear Systems”, 3rd ed., Englewood Cliffs, NJ: Prentice-Hall, (2002), 750p.

[11]. V. F. Nguen, A. V. Putov, and T. T. Nguen, “Adaptive control of an unmanned aerial vehicle,” in Proc. AIP Conf., vol. 1798, no. 020124, pp. 020124-1–020124-11, (2017), doi: 10.1063/1.4972716.

Downloads

Published

25-08-2025

How to Cite

[1]
D. P. Nguyen Viet and Nguyen Duy Khanh, “Synthesis of nonlinear robust control for aerial vehicles under parameter uncertainties”, JMST, vol. 105, no. 105, pp. 28–35, Aug. 2025.

Issue

Section

Electronics & Automation