Research on the fabrication and evaluation of certain properties of the multi-metallic catalyst supported on silica TeKL-25
11 viewsKeywords:
Multi-metallic catalyst, Silica, TeKL-25Abstract
This paper presents the research results on the synthesis of the multi-metallic catalyst material TeKL-25 based on a silica support. The characteristics of the synthesized material were analyzed using advanced techniques such as Field Emission Scanning Electron Microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray Diffraction (XRD), and Energy Dispersive X-ray Spectroscopy (EDX). The synthesized TeKL-25 material exhibits a tightly bonded structure, a rough surface, relatively uniform particle distribution, a BET surface area of 292.716 m2/g, and a mesoporous structure.
References
[1]. Hyunjoong Kim, Tae Yong Yoo, Megalamane S Bootharaju, Jeong Hyun Kim, Dong Young Chung, Taeghwan Hyeon, “Noble metal‐based multimetallic nanoparticles for electrocatalytic applications”, Advanced Science, 9(1), 2104054, (2021).
[2]. Xinbin Yu, Christopher T. Williams, “Recent Advances in the applications of mesoporous silica in heterogenous catalysis”, Catalysis Science & Technology, 19, issue 19, (2022).
[3]. Fabien Can, Xavier Courtois, Daniel Duprez, “Tungsten-based catalysts for environmental applications”, Catalysts, 11(6), 703, (2021).
[4]. Roberto Fiorenza, “Bimetallic catalysts for volatile organic compound oxidation”, Catalysts, 10(6), 661, (2020).
[5]. Sebastian P. Schwaminger, Christopher Syhr, Sonja Berensmeier, “Controlled synthesis of magnetic iron oxide nanoparticles: Magnetite or Maghemite”, Crystal, 10, 214, (2020).
[6]. Do Thi Phuong Hoang, Nguyen Thi Thuy, Nguyen Thi Ha, Tran Thi Hong Diep, Nguyen Ngoc Minh, Nguyen Hoang Anh, Le Thi Thanh Thuy, Nguyen Van Thang, Nguyen Thi Vuong Hoan, “Synthesis and photocatalytic activities of NiFe2O4 /nitrogen-doped graphene oxide composite”, Vietnam Journal of Catalysis and Adsorption, 9(2), 54-61, (2020).
[7]. V. Sydorchuk, S. Levytska, N. Shcherban, S. Khalameida, “Transition metal oxides supported onto silica gel as visible light-driven photocatalysts”, Research on Chemical Intermediates, 46, 3997-4015, (2020).
[8]. M.J. Coombes, E.J. Olivier, E. Prestat, S. J. Haigh, E. du Plessis, J.H. Neethling, “Iron-silica interaction during reduction of precipitated silica-promoted iron oxides using in situ XRD and TEM”, Applied Catalysis A: General, 613, 118031, (2021).
[9]. Hui-Ya Shih, Mei-Te Kuo, Yun-Ying Chen, Wei-Ying Hung, “Synthesis of mesoporous Cu Fe/silicates catalyst for methanol steam reforming”, International Journal of Hydrogen Energy, 44, 14416-14423, (2019).
[10]. Mohammad Ali Nasseri, Zinat Rezazadeh, Milad Kazemnejadi, Ali Allahresani, “Cu-Mn bimetallic complex immobilized on magnetic NPs as an efficient catalyst for domino one-pot preparation of Benzimidazole and Biginelli reactions from alcohols”, Catalysis Letters, 151, 1049-1067, (2020).
[11]. Aleksandra Jankowska, Andrzej Kowalczyk, Małgorzata Rutkowska, Marek Michalik, Lucjan Chmielarz, “Catalytic performance of bimetallic systems (Cu-Fe, Cu-Mn, Fe-Mn) based on spherical MCM-41 modified by template ion-exchange in NH3-SCR process”, Catalysts, 12(8), 885, (2022).
[12]. Kimiya Rajabzadeh, Ali Reza Sardarian, “Well-defined nanomagnetic nitrilotriacetic acid complex of Cu(II) supported on silica-coated nanosized magnetite: A new highly efficient and magnetically separable catalyst for C–N bond formation”, Department of Chemistry, 14, 21954-21970, (2024).
[13]. Mohammad Abdollahi-Alibeik, Zahra Ramazani, “Core-shell structured magnetic MCM-41-type mesoporous silica-supported Cu/Fe: A novel recyclable nanocatalyst for Ullmann-type homocoupling reactions”, Main Group Metal Chemistry, Vol 45, issue 1, (2022).
[14]. Christoph Buttersack, “Modeling of type IV and V sigmoidal adsorption isotherms”, Phys. Chem. Chem. Phys., 21, 5614-5626, (2019).
[15]. Sebastian T. Moerz, Klaus Knorr, Patrick Huber, “Capillary condensation, freezing, and melting in silica nanopores: A sorption isotherm and scanning calorimetry study on nitrogen in mesoporous SBA-15”, Chemical Physics, 85, 075403, (2012).
[16]. P. I. Ravikovitch, S. C. O. Domhnaill, A. V. Neimark, F. Schueth, K. K. Unger, “Capillary hysteresis in nanopores: Theoretical and experimental studies of nitrogen adsorption on MCM-41”, Langmuir, 12(12), 4765-4772, (1995).
[17]. C. F. Toncón-Leal, J. Villarroel-Rocha, M. T. P. Silva, T. P. Braga & K. Sapag, “Characterization of the mesoporous region by the scanning of the hysteresis loop in adsorption-desorption isotherms”, Adsorption, 27, 1109-1122, (2021).
[18]. M. A. A. Aziz, T. S. Chang, K. Y. Foo, Y. H. Ng, S. F. Chong, “Synthesis and Characterization of Cu-SiO₂ Catalysts for Carbon Monoxide Oxidation”, Chemical Engineering Journal, 2012, Vol. 203, pp. 153–160.