Optimization of structural parameters of the warhead to the penetration ability of the shaped charge

226 views

Authors

  • Nguyen Dinh Linh (Corresponding Author) Institute of Missile, Academy of Military Science and Technology
  • Le Hai Thuong Institute of Missile, Academy of Military Science and Technology
  • Nguyen Xuan Thanh Institute of Missile, Academy of Military Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.FEE.2024.212-218

Keywords:

GSA; Optimization; Shaped charge warhead; Liner structure; Penetration.

Abstract

The study of the rational selection of structural parameters for shaped charge warheads to achieve maximum penetration power is always a pressing issue that has received significant research attention. In this paper, the authors use a method for calculating the penetration power of shaped charges that takes into account the detonation position, combined with the Gravitational Search Algorithm (GSA) and the Autodyn 2D simulation method, to optimize the structure of a 110 mm shaped charge warhead by varying the following parameters: the half-angle of the liner cone α0, which varies within the range of [25°; 30°]; the height of the liner cone H, varying within the range of [87 mm; 90 mm]; the x-coordinate of the secondary detonation center xT, varying within the range of [21 mm; 27 mm]; and the y-coordinate of the secondary detonation center yT, varying within the range of [40 mm; 47 mm]. This initial research has identified a parameter set [α0; H; xT; yT] that achieves a maximum penetration depth of b = 717.98 mm.

References

[1]. Nguyễn Văn Thuỷ, Trần Văn Định, “Uy lực đạn”, Học viện Kỹ thuật Quân sự, Hà Nội, (2007).

[2]. Trần Văn Định, “Cấu tạo, tác dụng đạn dược lục quân”, Học viện Kỹ thuật Quân sự, Hà Nội, (2005).

[3]. Phạm Hữu Nguyên. “Nghiên cứu ảnh hưởng của tấm chắn sóng nổ đến chiều sâu xuyên đạn lõm”, Luận án TSKT, Học viện Kỹ thuật Quân sự, (2021).

[4]. Do Van Minh, Bui Minh Tuan, “Optimization of liner structure to enhance the penetration performance of shaped charge warhead”, Journal of Science and Technique, Vol.16, No. 02 (ISN 1859-0209), (2021).

[5]. Norlina Mohd Sabri, Mazidah Puteh, and Mohamad Rusop Mahmood. “A Review of Gravitational Search Algorithm”, Int. J. Advance. Soft Comput. Appl., Vol. 5, No. 3, (2013).

[6]. Esmat Rashedi, Hossein Nezamabadi-pour, Saeid Saryazdi. “GSA: A Gravitational Search Algorithm, Information Sciences”, vol. 179, no. 13, pp. 2232–2248, (2009). DOI: https://doi.org/10.1016/j.ins.2009.03.004

[7]. Trần Bá Tấn, Trần Văn Doanh, “Phương pháp tính toán uy lực đạn lõm có tính đến vị trí kích nổ”, Tạp chí Khoa học và Kỹ thuật số 179 (ISN 1859-0209), Tr147-152, (2016).

[8]. Liangliang Ding, Wenhui Tang and Xianwen Ran, “Simulation Study on Jet Formability and Damage Characteristics of a Low-Density Material Liner”, Materials 2018, 11, 72, (2017). DOI: https://doi.org/10.3390/ma11010072

[9]. ANSYS Autodyn User’s Manual (2021). http://www.ansys.com.

[10]. T. Đ. Thành, N. V. Thủy, Đ. V. Minh, “Vật lý nổ và va đập”, NXB Quân đội Nhân dân, (2022).

[11]. Орленко Л. П. “Физика взрыва”. В 2 т. -М., Физматлит, (2004).

[12]. T. Sy Ngo, S. Beer and P. Konečný, “Effect of Target Arrangement and Target Materials Properties on Penetration Depth”, Advances in Military Technology, Vol. 15, No. 2, (2020). DOI: https://doi.org/10.3849/aimt.01341

Published

06-12-2024

How to Cite

[1]
Nguyễn Đình Linh, Lê Hải Thượng, and Nguyễn Xuân Thành, “Optimization of structural parameters of the warhead to the penetration ability of the shaped charge”, JMST, no. FEE, pp. 212–218, Dec. 2024.

Issue

Section

Mechanics & Mechanical engineering